SW08
Assignment 3 (part 1)

Assignment: The World of Zuul
Due date: The assignment must be handed in at the beginning of your class on Tuesday, 30 November 2004 (or earlier).

The Game

Your task is to invent and implement an adventure game. You have been given a simple framework (zuul-better) that lets you walk through a couple of rooms. You can use this as a starting point.

1
Read The Code

Reading code is an important skill that you need to practise. You first task is to read some of the existing code and try to understand what it does. By the end of the assignment, you will need to understand most of it.

2
Make small extensions

As a little exercise to get warmed up, make some changes to the code. For example:

· change the name of a location to something different.

· change the exits – pick a room that currently is to the west of another room and put it to the north

· add a room (or two, or three, ...)

These and similar exercises should get you familiar with the game.

3
Design Your Game

First, you should decide what the goal of your game is. It should be something along the lines of: You have to find some items and take them to a certain room (or a certain person?). Then you can get another item. If you take that to another room, you win.

For example: You are at the University of Southern Denmark, Odense Campus. You have to find out where your tutorial class is. To find this, you have to find the front office and ask. At the end, you need to find the exam room. If you get there on time, and you have found your textbook somewhere along the way, and you have also been to the tutorial class, then you win. And if you’ve been to the cafeteria to drink a beer more than five times during the game, your exam mark halves.
Or: You are lost in a dungeon. You meet a dwarf. If you find something to eat that you can give to the dwarf, then the dwarf tells you where to find a magic wand. If you use the magic wand in the big cave, the exit opens, you get out and win.
It can be anything, really. Think about the scenery you want to use (a dungeon, a city, a building, etc) and decide what your locations (rooms) are. Make it interesting, but don’t make it too complicated. (I would suggest no more than 15 rooms.)

Put objects in the scenery, maybe people, monsters, etc. Decide what task the player has to master.

4
Implement the Game

Decide what classes you need to implement the game, then implement and test them.

5
Levels

The base functionality that you have to implement is:

· The game has several locations/rooms.

· The player can walk through the locations. (This was already implemented in the code you were given.)

· There are items in some rooms. Every room can hold any number of items. Some items can be picked up by the player, others can’t.

· The player can carry some items with him. Every item has a weight. The player can carry items only up to a certain total weight.

· The player can win. There has to be some situation that is recognised as the end of the game where the player is informed that he/she has won.

· Implement a command “back” that takes you back to the last room you’ve been in.

· Add at least four new commands (in addition to those that were present in the code you got from us).

Challenge tasks:

· Add characters to your game. Characters are people or animals or monsters – anything that moves, really. Characters are also in rooms (like the player and the items). Unlike items, characters can move around by themselves.

· Extend the parser to recognise three-word commands. You could, for example, have a command

give bread dwarf

to give some bread (which you are carrying) to the dwarf.

· Add a magic transporter room – every time you enter it you are transported to a random room in your game.

· Others. You can invent additional challenge tasks yourself. You have to discuss those with your tutor and get his/her approval before you implement them. Your tutor will advise you if you have picked something that is too difficult or too much work. Several other challenge tasks are suggested in the textbook.

6
Submission and Assessment

You have to submit the BlueJ project as a single file (jar or zip format) by email to your tutor before the due date. All code must be professionally written (comments and indentation!) and will be assessed for

· correctness

· appropriate use of language constructs

· style (commenting, indentation, etc.)

· design (consideration given to cohesion, coupling, maintainability)

· difficulty (extra marks for difficult extensions)

You also have to submit a report that includes

· the name and a short description of your game

· the description should include at least a user level description (what does the game do?) and a brief implementation description (what are important implementation features?)

· special features of your game

· comments on code quality: what consideration was given to issues such as coupling, cohesion, responsibility-driven design, maintainability, etc, during your design/implementation?

· known bugs or problems (Note: for a bug in your code that you document yourself, you may not lose many marks – maybe none, if it is in a challenge task. For bugs that we find that you did not document you will probably lose marks.)

· a printout of the source of all classes

The report should be four to five pages long.

A perfect implementation of the base tasks would make a good (but not very good) submission (a mark of 10, if this was marked separately). To do better than that you need to implement one or more challenge tasks.

The assignment must handed in to the MIP office by 15:00 on the due date (or earlier). Late submissions will not be accepted! If you, for any reason, cannot be present on the day the assignment is due, you have to hand your assignment in earlier!

The exam

Your work will be used as the basis for the interview in the exam. You are expected to identify authors of every section of code, and have written all the code attributed to you yourself (everything else is plagiarism!) and to be able to explain all of the code you have written in detail.

© M. Kölling, University of Southern Denmark

