
It’s time to jump in and get started with our discussion of object-oriented programming.
Learning to program requires a mix of some theory and a lot of practice. In this book, we
will present both, so that the two reinforce each other.

At the heart of object orientation are two concepts that we have to understand first: objects
and classes. These concepts form the basis of all programming in object-oriented lan-
guages. So let us start with a brief discussion of these two foundations.

 1.1 Objects and classes
If you write a computer program in an object-oriented language, you are creating, in your
computer, a model of some part of the world. The parts that the model is built up from are
the objects that appear in the problem domain. These objects must be represented in the
computer model being created. The objects from the problem domain vary with the pro-
gram you are writing. They may be words and paragraphs if you are programming a word
processor, users and messages if you are working on a social-network system, or monsters
if you are writing a computer game.

Objects may be categorized. A class describes,—in an abstract way,—all objects of a par-
ticular kind.

We can make these abstract notions clearer by looking at an example. Assume you want
to model a traffic simulation. One kind of entity you then have to deal with is cars. What
is a car in our context? Is it a class or an object? A few questions may help us to make a
decision.

What color is a car? How fast can it go? Where is it right now?

Main concepts discussed in this chapter:

 ■ objects

 ■ methods

 ■ classes

 ■ parameters

Objects and Classes
1

Chap ter

Concept
Java objects
model objects
from a problem
domain.

M01B_BARN7367_06_SE_C01.indd 3 3/4/16 6:35 PM

4 | Chapter 1 ■ Objects and Classes

You will notice that we cannot answer these questions until we talk about one specific car.
The reason is that the word “car” in this context refers to the class car; we are talking about
cars in general, not about one particular car.

If I speak of “my old car that is parked at home in my garage,” we can answer the ques-
tions above. That car is red, it doesn’t go very fast, and it is in my garage. Now I am talking
about an object—about one particular example of a car.

We usually refer to a particular object as an instance. We shall use the term “instance”
quite regularly from now on. “Instance” is roughly synonymous with “object”; we refer to
objects as instances when we want to emphasize that they are of a particular class (such as
“this object is an instance of the class car”).

Before we continue this rather theoretical discussion, let us look at an example.

 1.2 Creating objects
Start BlueJ and open the example named figures.1 You should see a window similar to that
shown in Figure 1.1.

In this window, a diagram should become visible. Every one of the colored rectangles
in the diagram represents a class in our project. In this project, we have classes named
 Circle, Square, Triangle, Person, and Canvas.

Right-click on the Circle class and choose

new Circle()

1 We regularly expect you to undertake some activities and exercises while reading this book. At this
point, we assume that you already know how to start BlueJ and open the example projects. If not,
read Appendix A first.

Concept
Objects are
created from
classes. The
class describes
the kind of
object; the
objects repre-
sent individual
instances of
the class.

Figure 1.1
The figures project
in BlueJ

M01B_BARN7367_06_SE_C01.indd 4 3/4/16 6:35 PM

1.3 Calling methods | 5

Concept
We can
 communicate
with objects
by invoking
 methods on
them. Objects
usually do
something if
we invoke a
method.

from the pop-up menu. The system asks you for a “name of the instance”; click OK—the
default name supplied is good enough for now. You will see a red rectangle toward the bot-
tom of the screen labeled “circle1” (Figure 1.2).

Figure 1.2
An object on the
object bench

Convention We start names of classes with capital letters (such as Circle) and
names of objects with lowercase letters (such as circle1). This helps to distinguish
what we are talking about.

Exercise 1.1 Create another circle. Then create a square.

Exercise 1.2 What happens if you call moveDown twice? Or three times? What
happens if you call makeInvisible twice?

 1.3 Calling methods
Right-click on one of the circle objects (not the class!), and you will see a pop-up menu
with several operations (Figure 1.3). Choose makeVisible from the menu—this will
draw a representation of this circle in a separate window (Figure 1.4).

You will notice several other operations in the circle’s menu. Try invoking moveRight and
moveDown a few times to move the circle closer to the corner of the screen. You may also
like to try makeInvisible and makeVisible to hide and show the circle.

You have just created your first object! “Circle,” the rectangular icon in Figure 1.1,
 represents the class Circle; circle1 is an object created from this class. The area at the
 bottom of the screen where the object is shown is called the object bench.

The entries in the circle’s menu represent operations that you can use to manipulate the
 circle. These are called methods in Java. Using common terminology, we say that these

M01B_BARN7367_06_SE_C01.indd 5 3/4/16 6:35 PM

6 | Chapter 1 ■ Objects and Classes

methods are called or invoked. We shall use this proper terminology from now on. We might
ask you to “invoke the moveRight method of circle1.”

 1.4 Parameters
Now invoke the moveHorizontal method. You will see a dialog appear that prompts you
for some input (Figure 1.5). Type in 50 and click OK. You will see the circle move 50 pixels
to the right.2

The moveHorizontal method that was just called is written in such a way that it
requires some more information to execute. In this case, the information required is the
distance—how far the circle should be moved. Thus, the moveHorizontal method is
more flexible than the moveRight and moveLeft methods. The latter always move the
circle a fixed distance, whereas moveHorizontal lets you specify how far you want
to move the circle.

2 A pixel is a single dot on your screen. Your screen is made up of a grid of single pixels.

Figure 1.3
An object’s pop-up
menu, listing its
operations

Figure 1.4
A drawing of a circle

Concept
Methods can
have param-
eters to pro-
vide additional
information for
a task.

M01B_BARN7367_06_SE_C01.indd 6 3/4/16 6:35 PM

1.5 Data types | 7

The additional values that some methods require are called parameters. A method indicates
what kinds of parameters it requires. When calling, for example, the moveHorizontal
method as shown in Figure 1.5, the dialog displays the line near the top.

void moveHorizontal(int distance)

This is called the header of the method. The header provides some information about
the method in question. The part enclosed by parentheses (int distance) is the
information about the required parameter. For each parameter, it defines a type and
a name. The header above states that the method requires one parameter of type int
named distance. The name gives a hint about the meaning of the data expected.
Together, the name of a method and the parameter types found in its header are called
the method’s signature.

 1.5 Data types
A type specifies what kind of data can be passed to a parameter. The type int signifies
whole numbers (also called “integer” numbers, hence the abbreviation “int”).

In the example above, the signature of the moveHorizontal method states that, before
the method can execute, we need to supply a whole number specifying the distance to
move. The data entry field shown in Figure 1.5 then lets you enter that number.

In the examples so far, the only data type we have seen has been int. The parameters of
the move methods and the changeSize method are all of that type.

Closer inspection of the object’s pop-up menu shows that the method entries in the menu
include the parameter types. If a method has no parameter, the method name is followed
by an empty set of parentheses. If it has a parameter, the type and name of that parameter

Figure 1.5
A method-call dialog

Exercise 1.3 Try invoking the moveVertical, slowMoveVertical, and
changeSize methods before you read on. Find out how you can use moveHori-
zontal to move the circle 70 pixels to the left.

Concept
The method
name and
the param-
eter types
of a method
are called its
signature.
They provide
the informa-
tion needed
to invoke that
method.

Concept
Parameters
have types.
The type
defines what
kinds of values
a parameter
can take.

M01B_BARN7367_06_SE_C01.indd 7 3/4/16 6:35 PM

8 | Chapter 1 ■ Objects and Classes

is displayed. In the list of methods for a circle, you will see one method with a different
parameter type: the changeColor method has a parameter of type String.

The String type indicates that a section of text (for example, a word or a sentence) is
expected. Strings are always enclosed within double quotes. For example, to enter the word
red as a string, type

"red"

The method-call dialog also includes a section of text called a comment above the method
header. Comments are included to provide information to the (human) reader and are
described in Chapter 2. The comment of the changeColor method describes what color
names the system knows about.

Java supports several other data types, including decimal numbers and characters. We shall
not discuss all of them right now, but rather come back to this issue later. If you want to
find out about them now, see at Appendix B.

 1.6 Multiple instances
Once you have a class, you can create as many objects (or instances) of that class as you
like. From the class Circle, you can create many circles. From Square, you can create
many squares.

Pitfall A common error for beginners is to forget the double quotes when typing in
a data value of type String. If you type green instead of "green", you will get an
error message saying something like "Error: cannot find symbol - variable green."

Exercise 1.4 Invoke the changeColor method on one of your circle objects
and enter the string "red". This should change the color of the circle. Try other
colors.

Exercise 1.5 This is a very simple example, and not many colors are supported.
See what happens when you specify a color that is not known.

Exercise 1.6 Invoke the changeColor method, and write the color into the
parameter field without the quotes. What happens?

Exercise 1.7 Create several circle objects on the object bench. You can do so by
selecting new Circle() from the pop-up menu of the Circle class. Make them
visible, then move them around on the screen using the "move" methods. Make
one big and yellow; make another one small and green. Try the other shapes too:
create a few triangles, squares, and persons. Change their positions, sizes, and
colors.

M01B_BARN7367_06_SE_C01.indd 8 3/4/16 6:35 PM

1.7 State | 9

Every one of those objects has its own position, color, and size. You change an attribute of
an object (such as its size) by calling a method on that object. This will affect this particu-
lar object, but not others.

You may also notice an additional detail about parameters. Have a look at the changeSize
method of the triangle. Its header is

void changeSize(int newHeight, int newWidth)

Here is an example of a method with more than one parameter. This method has two, and a
comma separates them in the header. Methods can, in fact, have any number of parameters.

 1.7 State
The set of values of all attributes defining an object (such as x-position, y-position, color,
diameter, and visibility status for a circle) is also referred to as the object’s state. This is
another example of common terminology that we shall use from now on.

In BlueJ, the state of an object can be inspected by selecting the Inspect function from the
object’s pop-up menu. When an object is inspected, an object inspector is displayed. The
object inspector is an enlarged view of the object that shows the attributes stored inside it
(Figure 1.6).

Concept
Multiple
instances.
Many similar
objects can be
created from a
single class.

Concept
Objects have
state. The state
is represented
by storing val-
ues in fields.

Exercise 1.8 Make sure you have several objects on the object bench, and then
inspect each of them in turn. Try changing the state of an object (for example, by
calling the moveLeft method) while the object inspector is open. You should see
the values in the object inspector change.

Figure 1.6
An object inspector,
showing details of an
object

Some methods, when called, change the state of an object. For example, moveLeft
changes the xPosition attribute. Java refers to these object attributes as fields.

M01B_BARN7367_06_SE_C01.indd 9 3/4/16 6:35 PM

10 | Chapter 1 ■ Objects and Classes

 1.8 What is in an object?
On inspecting different objects, you will notice that objects of the same class all have the
same fields. That is, the number, type, and names of the fields are the same, while the
actual value of a particular field in each object may be different. In contrast, objects of
a different class may have different fields. A circle, for example, has a “diameter” field,
while a triangle has fields for “width” and “height.”

The reason is that the number, types, and names of fields are defined in a class, not in an
object. So the class Circle defines that each circle object will have five fields, named
diameter, xPosition, yPosition, color, and isVisible. It also defines the types
for these fields. That is, it specifies that the first three are of type int, while the color is
of type String and the isVisible flag is of type boolean. (boolean is a type that can
represent two values: true and false. We shall discuss it in more detail later.)

When an object of class Circle is created, the object will automatically have these fields.
The values of the fields are stored in the object. That ensures that each circle has a color,
for instance, and each can have a different color (Figure 1.7).

Figure 1.7
A class and its
objects with fields
and values

50

30

80

circle_1: Circle

diameter

xPosition

yPosition

color "blue"

isVisible true

Circle

boolean isVisible

String color

int yPosition

int xPosition

int diameter

is instance of...

is instance of...

trueisVisible

"red"color

yPosition

xPosition

diameter

circle_2: Circle

230

75

30

M01B_BARN7367_06_SE_C01.indd 10 3/4/16 6:35 PM

1.9 Java code | 11

The story is similar for methods. Methods are defined in the class of the object. As a result,
all objects of a given class have the same methods. However, the methods are invoked
on objects. This makes it clear which object to change when, for example, a moveRight
method is invoked.

Figure 1.8
Two images created
from a set of shape
objects

Exercise 1.9 Figure 1.8 shows two different images. Choose one of these
images and recreate it using the shapes from the figures project. While you are
doing this, write down what you have to do to achieve this. Could it be done in
different ways?

 1.9 Java code
When we program in Java, we essentially write down instructions to invoke methods on
objects, just as we have done with our figure objects above. However, we do not do this
interactively by choosing methods from a menu with the mouse, but instead we type the
commands down in textual form. We can see what those commands look like in text form
by using the BlueJ Terminal.

Exercise 1.10 Select Show Terminal from the View menu. This shows another
window that BlueJ uses for text output. Then select Record method calls from
the terminal’s Options menu. This function will cause all our method calls (in their
textual form) to be written to the terminal. Now create a few objects, call some of
their methods, and observe the output in the terminal window.

Using the terminal’s Record method calls function, we can see that the sequence of creating
a person object and calling its makeVisible and moveRight methods looks like this in
Java text form:

Person person1 = new Person();
person1.makeVisible();
person1.moveRight();

M01B_BARN7367_06_SE_C01.indd 11 3/4/16 6:35 PM

12 | Chapter 1 ■ Objects and Classes

Here, we can observe several things:

■■ We can see what creating an object and giving it a name looks like. Technically, what we
are doing here is storing the Person object into a variable; we will discuss this in detail
in the next chapter.

■■ We see that, to call a method on an object, we write the name of the object, followed by
a dot, followed by the name of the method. The command ends with a parameter list—
an empty pair of parentheses if there are no parameters.

■■ All Java statements end with a semicolon.

Instead of just looking at Java statements, we can also type them. To do this, we use
the Code Pad. (You can switch off the Record method calls function now and close the
terminal.)

Exercise 1.11 Select Show Code Pad from the View menu. This should display
a new pane next to the object bench in your main BlueJ window. This pane is the
Code Pad. You can type Java code here.

In the Code Pad, we can type Java code that does the same things we did interactively
before. The Java code we need to write is exactly like that shown above.

Exercise 1.12 In the Code Pad, type the code shown above to create a Person
object and call its makeVisible and moveRight methods. Then go on to create
some other objects and call their methods.

Typing these commands should have the same effect as invoking the same command from
the object’s menu. If instead you see an error message, then you have mistyped the com-
mand. Check your spelling. You will note that getting even a single character wrong will
cause the command to fail.

 1.10 Object interaction
For the next section, we shall work with a different example project. Close the figures pro-
ject if you still have it open, and open the project called house.

Tip
You can recall
previously used
commands in
the Code Pad
by using the up
arrow.

Exercise 1.13 Open the house project. Create an instance of class Picture
and invoke its draw method. Also, try out the setBlackAndWhite and setColor
methods.

Exercise 1.14 How do you think the Picture class draws the picture?

M01B_BARN7367_06_SE_C01.indd 12 3/4/16 6:35 PM

1.11 Source code | 13

Five of the classes in the house project are identical to the classes in the figures project. But
we now have an additional class: Picture. This class is programmed to do exactly what
we have done by hand in Exercise 1.9.

In reality, if we want a sequence of tasks done in Java, we would not normally do it by
hand. Instead, we would create a class that does it for us. This is the Picture class.

The Picture class is written so that, when you create an instance, the instance creates two
square objects (one for the wall, one for the window), a triangle, and a circle. Then, when
you call the draw method, it moves them around and changes their color and size, until the
canvas looks like the picture we see in Figure 1.8.

The important points here are that: objects can create other objects; and they can call each
other’s methods. In a normal Java program, you may well have hundreds or thousands
of objects. The user of a program just starts the program (which typically creates a first
object), and all other objects are created—directly or indirectly—by that object.

The big question now is this: How do we write the class for such an object?

 1.11 Source code
Each class has some source code associated with it. The source code is text that defines
the details of the class. In BlueJ, the source code of a class can be viewed by selecting the
Open Editor function from the class’s pop-up menu, or by double-clicking the class icon.

Concept
Method call-
ing. Objects
can communi-
cate by calling
each other’s
methods.

Exercise 1.15 Look at the pop-up menu of class Picture again. You will see
an option labeled Open Editor. Select it. This will open a text editor displaying the
source code of the class.

The source code is text written in the Java programming language. It defines what fields
and methods a class has, and precisely what happens when a method is invoked. In the next
chapter, we shall discuss exactly what the source code of a class contains, and how it is
structured.

A large part of learning the art of programming is learning how to write these class defini-
tions. To do this, we shall learn to use the Java language (although there are many other
programming languages that could be used to write code).

When you make a change to the source code and close the editor, the icon for that class
appears striped in the diagram.3 The stripes indicate that the source has been changed. The
class now needs to be compiled by clicking the Compile button. (You may like to read the
“About compilation” note for more information on what is happening when you compile a
class.) Once a class has been compiled, objects can be created again and you can try out
your change.

3 In BlueJ, there is no need to explicitly save the text in the editor before closing. If you close the
 editor, the source code will automatically be saved.

Concept
The source
code of a class
determines
the structure
and behavior
(the fields and
methods) of
each of the
objects of that
class.

M01B_BARN7367_06_SE_C01.indd 13 3/4/16 6:35 PM

14 | Chapter 1 ■ Objects and Classes

About compilation When people write computer programs, they typically use
a “higher-level” programming language such as Java. A problem with that is that
a computer cannot execute Java source code directly. Java was designed to be
reasonably easy to read for humans, not for computers. Computers, internally, work
with a binary representation of a machine code, which looks quite different from
Java. The problem for us is that it looks so complex that we do not want to write it
directly. We prefer to write Java. What can we do about this?

The solution is a program called the compiler. The compiler translates the Java code
into machine code. We can write Java and run the compiler—which generates the
machine code—and the computer can then read the machine code. As a result, every
time we change the source code, we must first run the compiler before we can use
the class again to create an object. Otherwise, the machine code version that the
computer needs will not exist.

Exercise 1.16 In the source code of class Picture, find the part that actually
draws the picture. Change it so that the sun will be blue rather than yellow.

Exercise 1.17 Add a second sun to the picture. To do this, pay attention to the
field definitions close to the top of the class. You will find this code:

private Square wall;

private Square window;

private Triangle roof;

private Circle sun;

You need to add a line here for the second sun. For example:

private Circle sun2;

Then write the appropriate code in two different places for creating the second
sun and making it visible when the picture is drawn.

Exercise 1.18 Challenge exercise (This means that this exercise might not be
solved quickly. We do not expect everyone to be able to solve this at the moment.
If you do, great. If you don’t, then don’t worry. Things will become clearer as you
read on. Come back to this exercise later.) Add a sunset to the single-sun version
of Picture. That is, make the sun go down slowly. Remember: The circle has a
method slowMoveVertical that you can use to do this.

Exercise 1.19 Challenge exercise If you added your sunset to the end of the
draw method (so that the sun goes down automatically when the picture is
drawn), change this now. We now want the sunset in a separate method, so that
we can call draw and see the picture with the sun up, and then call sunset (a
separate method!) to make the sun go down.

M01B_BARN7367_06_SE_C01.indd 14 3/4/16 6:35 PM

1.13 Return values | 15

 1.12 Another example
In this chapter, we have already discussed a large number of new concepts. To help in
understanding these concepts, we shall now revisit them in a different context. For this,
we use another example. Close the house project if you still have it open, and open the
 lab-classes project.

This project is a simplified part of a student database designed to keep track of students in
laboratory classes, and to print class lists.

Exercise 1.20 Challenge exercise Make a person walk up to the house after the
sunset.

Exercise 1.21 Create an object of class Student. You will notice that this time
you are prompted not only for a name of the instance, but also for some other
parameters. Fill them in before clicking OK. (Remember that parameters of type
String must be written within double quotes.)

Exercise 1.22 Create some Student objects. Call the getName method on
each object. Explain what is happening.

 1.13 Return values
As before, you can create multiple objects. And again, as before, the objects have methods
that you can call from their pop-up menu(s).

Concept
result. Meth-
ods may return
information
about an object
via a return
value.

When calling the getName method of the Student class, we notice something new:
 methods may return a result value. In fact, the header of each method tells us whether or
not it returns a result, and what the type of the result is. The header of getName (as shown
in the object’s pop-up menu) is defined as

String getName()

The word String before the method name specifies the return type. In this case, it states
that calling this method will return a result of type String. The header of changeName
states:

void changeName(String replacementName)

The word void indicates that this method does not return any result.

Methods with return values enable us to get information from an object via a method call.
This means that we can use methods either to change an object’s state, or to find out about
its state. The return type of a method is not part of its signature.

M01B_BARN7367_06_SE_C01.indd 15 3/4/16 6:35 PM

16 | Chapter 1 ■ Objects and Classes

 1.14 Objects as parameters

Figure 1.9
Adding a student to
a LabClass

Exercise 1.23 Create an object of class LabClass. As the signature indicates,
you need to specify the maximum number of students in that class (an integer).

Exercise 1.24 Call the numberOfStudents method of that class. What does it
do?

Exercise 1.25 Look at the signature of the enrollStudent method. You will
notice that the type of the expected parameter is Student. Make sure you have
two or three students and a LabClass object on the object bench, then call
the enrollStudent method of the LabClass object. With the input cursor in
the dialog entry field, click on one of the student objects; this enters the name
of the student object into the parameter field of the enrollStudent method
(Figure 1.9). Click OK and you have added the student to the LabClass. Add one
or more other students as well.

Exercise 1.26 Call the printList method of the LabClass object. You will
see a list of all the students in that class printed to the BlueJ terminal window
(Figure 1.10).

Figure 1.10
Output of the
 LabClass class
listing

M01B_BARN7367_06_SE_C01.indd 16 3/4/16 6:35 PM

1.15 Summary | 17

As the exercises show, objects can be passed as parameters to methods of other objects. In
the case where a method expects an object as a parameter, the expected object’s class name
is specified as the parameter type in the method signature.

Explore this project a bit more. Try to identify the concepts discussed in the figures exam-
ple in this context.

Exercise 1.27 Create three students with the following details:

Snow White, student ID: A00234, credits: 24

Lisa Simpson, student ID: C22044, credits: 56

Charlie Brown, student ID: A12003, credits: 6

Then enter all three into a lab and print a list to the screen.

Exercise 1.28 Use the inspector on a LabClass object to discover what fields
it has.

Exercise 1.29 Set the instructor, room, and time for a lab, and print the list to
the terminal window to check that these new details appear.

 1.15 Summary
In this chapter, we have explored the basics of classes and objects. We have discussed the fact
that objects are specified by classes. Classes represent the general concept of things, while
objects represent concrete instances of a class. We can have many objects of any class.

Objects have methods that we use to communicate with them. We can use a method to
make a change to the object or to get information from the object. Methods can have
parameters, and parameters have types. Methods have return types, which specify what
type of data they return. If the return type is void, they do not return anything.

Objects store data in fields (which also have types). All the data values of an object together
are referred to as the object’s state.

Objects are created from class definitions that have been written in a particular program-
ming language. Much of programming in Java is about learning to write class definitions.
A large Java program will have many classes, each with many methods that call each other
in many different ways.

To learn to develop Java programs, we need to learn how to write class definitions, includ-
ing fields and methods, and how to put these classes together well. The rest of this book
deals with these issues.

Terms introduced in this chapter:

object, class, instance, method, signature, parameter, type, state, source code,
return value, compiler

M01B_BARN7367_06_SE_C01.indd 17 3/4/16 6:35 PM

18 | Chapter 1 ■ Objects and Classes

Concept summary
■■ object Java objects model objects from a problem domain.

■■ class Objects are created from classes. The class describes the kind of object; the objects
represent individual instances of the class.

■■ method We can communicate with objects by invoking methods on them. Objects
 usually do something if we invoke a method.

■■ parameter Methods can have parameters to provide additional information for a task.

■■ signature The method name and the parameter types of a method are called its
 signature. They provide the information needed to invoke that method.

■■ type Parameters have types. The type defines what kinds of values a parameter can take.

■■ multiple instances Many similar objects can be created from a single class.

■■ state Objects have state. The state is represented by storing values in fields.

■■ method calling Objects can communicate by calling each other’s methods.

■■ source code The source code of a class determines the structure and behavior (the fields
and methods) of each of the objects of that class.

■■ result Methods may return information about an object via a return value.

Exercise 1.30 In this chapter we have mentioned the data types int and
String. Java has more predefined data types. Find out what they are and what
they are used for. To do this, you can check Appendix B, or look it up in another
Java book or in an online Java language manual. One such manual is at

http://download.oracle.com/javase/tutorial/java/nutsandbolts/
datatypes.html

Exercise 1.31 What are the types of the following values?

0

"hello"

101

-1

true

"33"

3.1415

M01B_BARN7367_06_SE_C01.indd 18 3/4/16 6:35 PM

1.15 Summary | 19

Exercise 1.32 What would you have to do to add a new field, for example one
called name, to a circle object?

Exercise 1.33 Write the header for a method named send that has one param-
eter of type String, and does not return a value.

Exercise 1.34 Write the header for a method named average that has two
parameters, both of type int, and returns an int value.

Exercise 1.35 Look at the book you are reading right now. Is it an object or a
class? If it is a class, name some objects. If it is an object, name its class.

Exercise 1.36 Can an object have several different classes? Discuss.

M01B_BARN7367_06_SE_C01.indd 19 3/4/16 6:35 PM

M01B_BARN7367_06_SE_C01.indd 20 3/4/16 6:35 PM

