

The BlueJ Environment

Reference Manual

Version 2.0

for BlueJ Version 2.0

Kasper Fisker
Michael Kölling

Mærsk Mc-Kinney Moller Institute
University of Southern Denmark

 i

HOW DO I ... ? – INTRODUCTION .. 1

ABOUT THIS DOCUMENT... 1
RELATED DOCUMENTS.. 1
REPORT AN ERROR.. 1
USING THE CONTEXT MENU... 1

1 PROJECTS .. 2

1.1 CREATE A NEW PROJECT... 2
1.2 OPEN A PROJECT ... 2
1.3 FIND OUT WHAT A PROJECT DOES .. 2
1.4 COPY A PROJECT ... 3
1.5 COMPILE A PROJECT ... 3
1.6 DOCUMENT A PROJECT ... 3
1.7 EXECUTE A PROJECT ... 3
1.8 PRINT THE PACKAGE WINDOW ... 4
1.9 CREATE (EXECUTABLE) JAR FILES... 4

2 CLASSES ... 6

2.1 CREATE A NEW CLASS .. 6
2.2 REMOVE A CLASS.. 6
2.3 RENAME A CLASS.. 7
2.4 COMPILE A CLASS ... 7
2.5 EDIT A CLASS .. 7
2.6 OPEN A CLASS ... 8
2.7 VIEW THE INTERFACE OF A CLASS ... 8
2.8 VIEW THE IMPLEMENTATION OF A CLASS .. 8
2.9 CREATE OBJECTS FROM AVAILABLE LIBRARY CLASSES ... 8

3 PROJECT EDITING ... 9

3.1 CREATE AND REMOVE CLASSES ... 9
3.2 LAYOUT A PROJECT .. 9
3.3 MOVE A CLASS ICON... 9
3.4 RESIZE A CLASS ICON ... 9
3.5 MOVE AN ARROW ... 9
3.6 ADD A “USES” ARROW.. 10
3.7 ADD AN “INHERITANCE” ARROW ... 10
3.8 REMOVE A “USES” OR “INHERITANCE” ARROW .. 10
3.9 WRITE A PROJECT DESCRIPTION... 10
3.10 USE BLUEJ USING ONLY THE KEYBOARD .. 11

4 EDITING SOURCE CODE .. 12

4.1 VIEW THE SOURCE CODE OF A CLASS... 12
4.2 ENTER A NEW METHOD... 12
4.3 FIND ERRORS IN THE SOURCE ... 12
4.4 FIND OUT WHAT THE EDITOR CAN DO .. 12
4.5 FIND OUT WHAT A FUNCTION KEY DOES .. 13
4.6 CHANGE KEY BINDINGS.. 13
4.7 MAKE STAND-OUT COMMENTS.. 14
4.8 USE THE AUTO-INDENT INT THE TEXT EDITOR... 14

5 EXECUTION... 16

5.1 CREATE AN OBJECT... 16
5.2 CALL A METHOD ... 16
5.3 ENTER PARAMETERS... 17
5.4 EXECUTE A STATIC METHOD .. 17
5.5 EXECUTE A "MAIN" METHOD ... 18

 ii

5.6 EXECUTE AN OBJECT THAT WAS RETURNED BY A METHOD .. 18
5.7 USE AN OBJECT FROM THE OBJECT BENCH AS A PARAMETER ... 18
5.8 STOP THE EXECUTION OF A BLUEJ PROGRAM .. 19

6 DEBUGGING.. 20

6.1 INSPECT AN OBJECT .. 20
6.2 SET A BREAKPOINT ... 21
6.3 REMOVE A BREAKPOINT ... 21
6.4 STEP THROUGH MY CODE ... 22
6.5 INSPECT VARIABLE VALUES IN MY PROGRAM ... 23
6.6 FIND OUT ABOUT THE CALL SEQUENCE AT A BREAKPOINT ... 24
6.7 OPEN THE DEBUGGER WINDOW.. 24

7 THE TERMINAL WINDOW... 25

7.1 SHOW/HIDE THE TERMINAL WINDOW... 25
7.2 CLEAR THE SCREEN OF THE TEXT TERMINAL... 25
7.3 SAVE THE PROGRAM OUTPUT TO A FILE... 25
7.4 KEEP ALL OUTPUT... 25
7.5 RECORD WHICH METHODS IS CALLED.. 26
7.6 CLEAR THE TERMINAL WINDOW AFTER EACH METHOD CALL... 26

8 THE CODE PAD .. 27

8.1 SHOW/HIDE THE CODE PAD... 27
8.2 EVALUATE A SIMPLE EXPRESSION.. 27
8.3 EVALUATE MULTI LINE EXPRESSIONS.. 27
8.4 ENTER STATEMENTS ... 27
8.5 USE VARIABLES .. 28
8.6 INSPECT OBJECT ON THE CODE PAD.. 28
8.7 MOVE OBJECTS TO THE OBJECT BENCH.. 28
8.8 REUSE PREVIOUSLY EXECUTED STATEMENTS ... 29

9 CONFIGURATION ... 30

9.1 CHANGE BLUEJ SETTINGS USING BLUEJ.DEFS... 30
9.2 CHANGE BLUEJ SETTINGS USING INVOKATION PARAMETERS .. 30
9.3 FIND BLUEJ.DEFS ON MY MACOS X .. 31
9.4 USE THE PREFERENCES DIALOG ... 31
9.5 ADD ADDITIONAL HELP MENU ITEMS... 31
9.6 CHANGE MY HOME DIRECTORY.. 31
9.7 USE A LOCAL COPY OF THE DOCUMENTATION .. 32
9.8 CONFIGURE THE DOCUMENTATION GENERATION ... 32
9.9 CHANGE THE WAY APPLETS ARE EXECUTED ... 33
9.10 SPECIFY LIBRARIES THAT ARE TO BE USED IN ALL PROJECTS ... 33
9.11 SPECIFY LIBRARIES THAT ARE TO BE USED IN A SINGLE PROJECT... 34
9.12 CONFIGURE THE WEB BROWSER ON NON MAC/WIN32 SYSTEMS .. 34
9.13 CHANGE FONTS ... 34
9.14 CHANGE THE INTERFACE LANGUAGE .. 35
9.15 USE A DEFAULT LOCATION FOR PROJECTS... 35
9.16 SWITCH SYNTAX HIGHLIGHTING ON/OFF ... 36
9.17 SWITCH AUTOMATIC INDENTION ON/OFF... 36
9.18 SWITCH LINENUMBERS ON/OFF .. 36
9.19 SWITCH BRACKET MATCHING ON/OFF ... 36
9.20 SET THE TAB SIZE.. 37
9.21 MAKE BLUEJ BACKUP MY SOURCEFILES... 37
9.22 CHANGE THE COMPILER BLUEJ USES .. 37
9.23 MAKE BLUEJ WRITE DEBUG OUTPUT TO A LOGFILE INSTEAD OF THE CONSOLE.......................... 37
9.24 STOP BLUEJ FROM OPTIMIZING MY CODE.. 38
9.25 MAKE BLUEJ PLACE THE MENUBAR AT THE TOP OF THE SCREEN ON MY MAC 38

 iii

9.26 CHANGE THE DEFAULT DIMENSIONS OF THE TERMINAL WINDOW.. 38
9.27 CHANGE THE COLOURS... 38
9.28 MODIFY CLASS TEMPLATES.. 39
9.29 ADD NEW CLASS TEMPLATES ... 40
9.30 USE DIFFERENT TEMPLATE FOR NEW METHODS .. 40

10 UNIT TESTING.. 41

10.1 ENABLE THE UNIT TESTING FUNCTIONALITY... 41
10.2 CREATE TEST CLASSES ... 41
10.3 CREATE TEST METHODS ... 41
10.4 RUN TESTS... 43
10.5 INTERPRET TEST RESULTS .. 43
10.6 CREATE A TESTFIXTURE ... 44
10.7 MODIFY AN EXISTING TESTFIXTURE .. 44
10.8 WRITE TEST METHODS BY HAND.. 44
10.9 WRITE TESTS FIRST... 44
10.10 TEST MULTIPLE CLASSES.. 45
10.11 TEST A GUI COMPONENT ... 45

11 MISCELLANEOUS ... 46

11.1 USE THE FILE SELECTION DIALOG .. 46
11.2 MAKE BLUEJ FIND MY FILE, PICTURE OR OTHER RESOURCE. ... 46
11.3 SELECT MORE THAN ONE CLASS OR PACKAGE IN THE CLASS DIAGRAM 48

12 TROUBLESHOOTING... 49

12.1 GET THE ERROR MESSAGES PRODUCED BY BLUEJ .. 49

The BlueJ Environment Reference Manual, Version 2.0

 1

How Do I ... ? – Introduction

 About This Document

This is the "How Do I..." reference manual for the BlueJ Application
Development Environment. This manual tries to answer questions about the
BlueJ environment. These questions are assumed to be of the form "How do I do
this-or-that?" You can replace the do this-or-that part with any of the section
headings, and hopefully construct a question that is both close to what you
wanted to ask and answered in this manual. Of course, you can also just browse
through this manual, maybe after you have used the environment for a while, and
possibly find out one thing or another that you did not know about BlueJ. There
are lots of tips and tricks that are not essential (you get along without them) but
which are handy, neat and can speed up your work. Many of these are described
in this document.

 Related Documents

This document is intended as a reference manual to look up specific tasks when
working with BlueJ. If you are interested in an introduction to the BlueJ system,
refer to the BlueJ Tutorial.

 Report An Error

If you find any errors in this document, please contact us at bluej-
support@bluej.org

 Using The Context Menu

A common element in graphical user interfaces is the context menu. It is related
to an object in the user interface and displays a menu located next to that object.
The menu items are often actions that are relevant to the related object, at this
particular time and state.

On MacOs the context menu is invoked by holding down the CTRL key while
clicking the mouse on a object.

On Windows the right mouse button is clicked on an object.

The BlueJ Environment Reference Manual, Version 2.0

 2

1 Projects

1.1 Create a new project

menu: Project/New Project... shortcut: —
To create a new project, start BlueJ. Select New... from the Project menu. A file
selection dialog will open. Use the file selection dialog to enter a name and
location for the project.

Click Ok, and the new project is created and opened.

BlueJ will create a directory for your project, so you should be a bit careful with
the name: characters that your file system cannot cope with should not be
included in the project name. Also, class paths will be set automatically for your
project, and Java has trouble with some characters in the class path. Generally, it
is best to stick to alphanumerical characters for project names.

1.2 Open a project

menu: Project/Open Project... shortcut: Ctrl-o
There are two ways to open a project: from the command line of a shell (before
Blue is started) type

 bluej <project-name>

to start BlueJ and automatically open the project <project-name>.

If BlueJ is already running, use the Open Project... command from the menu. A
file selection dialog will open. Use the file selection dialog to select a project to
open. Click Ok, and the project is opened.

1.3 Find out what a project does

menu: shortcut: — context menu: Open
A project is described in the project description. The project description is shown
as a note icon close to the top left corner of the main screen:

To read the project description, double click on the note icon.

The BlueJ Environment Reference Manual, Version 2.0

 3

1.4 Copy a project

To copy a project, you first Open a project. This is the original you want to
copy. Then you select Save As... from the project menu to save the project
under a different name. The Save As... will open a file selection dialog. Use the
file selection dialog to enter a new name and location for the project.

1.5 Compile a project

menu: Tools/Compile shortcut: Ctrl-k toolbar button: Compile
To compile a project, select Compile from the menu or toolbar. This function
will make an analysis of the current project, check which classes need
recompilation, check dependencies, and then compile all classes that need
compilation in the appropriate order.

This function will always try to compile all uncompiled classes. If errors are
detected, each class with one or more errors is opened and the first error is
displayed. To compile one or more specific classes without compiling them all,
see Compile A Class.

1.6 Document a project

To document a project properly, you should at least do the following: Write a
project description, comment all classes and comment all methods.

Class comments and method comments are both entered in the class's source
code. Open a class to enter these comments.

1.7 Execute a project

To execute a project, you first have to find out which method you want to
execute. Some projects have a hierarchical structure with one top-level class. The
top-level class can have one or more start methods. Some projects have a more
open structure in which you call various functions from different classes to
perform the various tasks the project offers. If you do not know which class or
which method you should use have a look at the project description note. It
should be described there. The project description note is further explained in
Find out what a project does. As a rule-of-thumb, top-level classes are usually
placed in the project window near the top-left corner.

Once you know what you want to execute, you may want to Execute a static
method, or you may need to Create an object to call one of its methods. Once
you have created that object, you can Call a method.

The BlueJ Environment Reference Manual, Version 2.0

 4

1.8 Print the package window

menu: Project/Print... shortcut: Ctrl-p
To print a project, select Print... from the project menu. A dialog appears that
looks like this:

Select one or more of the aspects of the project for printing. After selecting Ok,
you will see your standard print dialog.

1.9 Create (executable) Jar files

menu: Project/Create Jar File...
Jar files can be created directly from BlueJ. Jar files include all files of a given
project in a single file. This presents a convenient way to transfer a project from
one location to another. Jar files can be made executable, effectively creating an
application that can be started by double-clicking.

In BlueJ, jar files are created by choosing the Create Jar File function from the
Project menu. A dialogue similar to the one shown here will be displayed.

If the jar file is to be executable (so that, for example, a double-click in Windows
will start it) select the "main class" from the popup menu. The main class must
contain a standard main method which will be executed to start the application.

The BlueJ Environment Reference Manual, Version 2.0

 5

If the project has access to external libraries, as described in Specify libraries that
are to be used in all projects and Specify libraries that are to be used in a single
project, an area titled Include user libraries will be displayed in the middle of
the dialogue. (If no libraries are used, this area will be absent.) Check every
library that the current project uses.

If no libraries have been included, a single jar file will be created. If libraries are
included, a folder is created and the executable jar file is put in there along with
the library jar files. The executable jar file needs to be in the same folder as the
library jar file to function. It is possible to change the location which the
executable jar file expects to find the library jar files, by editing its manifest.

Once you click Continue, you will be prompted for a file name for the jar file.

The BlueJ Environment Reference Manual, Version 2.0

 6

2 Classes

2.1 Create a new class

menu: Edit/New Class... shortcut: Ctrl-n toolbar button: New Class...
To create a new class in a project, select the New Class... menu item or toolbar
button. This is only possible while you have a project open.

A dialog will appear to let you enter a name for the new class:

You have to enter a name, and choose one of the options “Class”, “Abstract
Class”, “Interface”, "Applet", “Unit Test” or Enum.

The name must be a valid Java identifier. In short, it must be a word that consists
only of letters, digits and the underscore (_). No spaces or other characters are
allowed. The first character may not be a digit.

“Class”, “Abstract Class”, “Interface”, "Applet", “Unit Test” or “Enum” options
only determine what kind of skeleton is used for the initial source of the class. It
is not a final choice: you could change your mind later, and replace the complete
source code of, say, a class with code for an interface. The environment would
recognise that the class is now an interface and treat it accordingly. Of course,
this works the other way around as well.

2.2 Remove a class

menu: Edit/Remove context menu: Remove

The BlueJ Environment Reference Manual, Version 2.0

 7

To remove a class, select it and then choose Remove Class from the Edit menu.
You will be asked to confirm, since removing a class is not reversible. Once a
class has been removed, it is deleted in the file system and cannot be restored.

If more than one class is selected, all the classes in the selection will be removed.
See Select more than one class or package in the class diagram

2.3 Rename a class

To rename a class, first Open a class, then replace the name of the class in the
class header (the first line of the source) with the new name you want it to have.
As soon as you save or close the class, the new name will also be shown in the
class icon in the class diagram.

2.4 Compile a class

main window:

menu: Tools/Compile Selected shortcut: Shift-Ctrl-k context menu: Compile

editor:
menu: Tools/Compile shortcut: Ctrl-k toolbar button: Compile
There are two ways to compile a particular class: from the main window or from
the editor.

In the main window, select the class(es) and then select Compile Selected from
the Tools menu.

If the class is open, select Compile from the Tools menu or the toolbar in the
editor.

Both of these functions do the same thing: they will first analyse the
dependencies of the selected class and check whether a class that this one
depends on is uncompiled. Classes that this one depends on are classes used and
the parent class (if any). Those classes are compiled first, if necessary, and then
the selected class is compiled. Thus, it is not necessary to explicitly compile used
classes first. If an error is found it will be highlighted and an error message is
displayed (the class will be opened if it is not open already). If no error is found,
the class will be marked as compiled in both the editor and the main window.

It is not necessary to save classes before compilation. They will be implicitly
saved before compilation takes place if they were changed since the last save.

2.5 Edit a class

To edit the source of a class, you first have to Open a class. If the class is in
interface view, you have to switch to the implementation view (see View the
implementation of a class). Then the class is ready to be edited.

The BlueJ Environment Reference Manual, Version 2.0

 8

2.6 Open a class

main window:

context menu: Open Editor
"Open a class" is the expression we commonly use to shorten the more precise
"Open an editor to show the source of a class". You open a class if you

 - want to see the interface of the class
 - want to see the implementation
 - want to edit the class (change the interface or implementation)

You can also open a class by double clicking the class icon.

Depending on which view you used when you last looked at the class, you might
see it in implementation view or interface view. If you have not opened the class
in this session, it will initially appear in implementation view. The drop-down
box in the editor toolbar indicates which view is currently shown:

2.7 View the interface of a class

To see the interface of a class, you have to Open a class. If the class display is in
implementation mode, select the Interface option in the drop-down box in the
editor toolbar.

Showing the interface is only possible if the class has been compiled.

2.8 View the implementation of a class

To see the implementation of a class, you have to Open a class. If the class
display is in interface mode, select the Implementation option in the drop-down
box in the editor toolbar.

2.9 Create Objects from Available Library Classes

You can create objects of library classes that are not shown in the class diagram
(such as java.lang.String or java.awt.Point) by selecting Tools/Use Library
Class... . In the resulting dialog, type in (or select from the popup menu) the full
class name of the class you want to instantiate. Hit enter, and you will see a list
of all constructors and static methods. Select a constructor and click Ok.

You can, in the same way, call static methods of library classes.

The BlueJ Environment Reference Manual, Version 2.0

 9

3 Project editing

3.1 Create and remove classes

To find out how to create or remove a class from the project, see Create a new
class and Remove a class in the "Classes" section of this manual.

3.2 Layout a project

You can change the layout of the project (the icons in the main window) without
changing its functionality. You should attempt to create a layout that reflects as
closely as possible the logical application structure.

To change the layout, you can Move a class icon on the screen. Move all the
icons until the layout appears the way you want it. You cannot move arrows
yourself. All arrows are computed and drawn automatically.

You can also Resize a class icon.

3.3 Move a class icon

To move an icon on the screen, you drag it with the (left) mouse button.
Dragging means: you click in the icon and keep holding the mouse button down
while you move the mouse around. Release the mouse button to drop the icon.

3.4 Resize a class icon

To resize a class icon, you click in the lower right corner of the icon and drag the
corner. This corner is separated from the rest of the icon to mark the area in the
icon used for resizing.

3.5 Move an arrow

You cannot move an arrow explicitly. If you do not like the layout of your
arrows, all you can do is to move your classes around. All arrows will be
redrawn automatically.

Resize handle

The BlueJ Environment Reference Manual, Version 2.0

 10

3.6 Add a “uses” arrow

menu: Edit/New Uses Arrow toolbar button:
To add a "uses" arrow, select the New Uses Arrow item from the menu or
toolbar, select the client class , then select the server class. You can also click the
client class and then drag to the server class.
(That is: click and hold the mouse button in the client class, move the mouse
pointer to the server class while still holding the button down, and release the
button in the server class.)

Alternatively, you can add the used class to the source of the client class. The
project diagram will be updated as soon as the class is saved or closed.

3.7 Add an “inheritance” arrow

menu: Edit/New Inheritance Arrow toolbar button:

To add an inheritance arrow, select the New Inheritance Arrow item from the
menu or toolbar, select the subclass, then select the superclass. You can also
click the subclass and then drag to the superclass.
(That is: click and hold the mouse button in the subclass, move the mouse
pointer to the superclass while still holding the button down, and release the
button in the superclass.)

Alternatively, you can insert the superclass to the class header in the source of
the subclass. The project diagram will be updated as soon as the class is saved or
closed.

3.8 Remove a “uses” or “inheritance” arrow

menu: Edit/Remove context menu: Remove
To remove an arrow, select it and choose Remove from the Edit menu. This will
remove the existing arrow.

Alternatively, you can remove the relationship represented by the arrow from the
source. The project diagram will be updated as soon as the class is saved or
closed.

3.9 Write a project description

The project description is entered in the project description note. The project
description note is shown on the main screen as an icon:

You can double-click the note to open it, and then write the description of the
project into it. It should at least contain a statement describing what the project

The BlueJ Environment Reference Manual, Version 2.0

 11

does, who wrote it, what it is intended for, and how a user starts it (what
classes/methods to use to invoke certain functionality). The project description
note provides, by default, a structure to enter some of these details. It is a good
idea to use this structure, since it makes it easier to find information.

3.10 Use BlueJ using only the keyboard

Use TAB to shift focus between the diagram, the object bench, and if shown, the
code pad.

Key bindings for the main diagram

Arrow keys Move focus

Shift+(Arrow keys) Move class

Ctrl+(Arrow keys) Resize class

Plus or Minus Grow or shrink class

Page-up or Page-down Select arrows

Space or Enter Post menu

Space or Enter (when menu posted) Activate selected menu item

ESC Hide menu

A or ctrl+A or shift+A Select all, undo selection

Key bindings for object bench

Arrow keys Move focus

Space or Enter Post menu

Space or Enter (when menu posted) Activate selected menu item

ESC Hide menu, undo selection

The BlueJ Environment Reference Manual, Version 2.0

 12

4 Editing source code

4.1 View the source code of a class

How to view the source of a class is described in Open a class and View the
implementation of a class in the section about classes.

4.2 Enter a new method

editor:
menu: Edit/Insert Method shortcut: Ctrl-m
To enter a new method, type the method in the editor at the location where the
method should appear.

Selecting Edit/Insert method inserts a skeleton for the new method. The skeleton
will be indented to the level that the cursor was indented to when invoking this
function.

You can configure the method skeleton (See Use different template for new
methods) that is used when inserting a new method.

The new method will appear as an option in the class’s popup menu.

4.3 Find errors in the source

To check the source of a class for error, you just Compile a class. Compilation
will highlight the first error in the source and display the error message in the
information area in the editor window.

Compilation only shows one error at a time. To see other errors, fix the first one
and compile again.

If you need help to understand the error message, click the icon. BlueJ will
then try to explain the error message in straight forward terms.

4.4 Find out what the editor can do

editor:
menu: Options/Key Bindings
Getting to know your editor is a very valuable thing that can greatly increase
your work efficiency (and it's a lot more fun too!). Moe (the editor in the BlueJ
system) has two mechanisms to find out what functions are supported and what
each function does. The key bindings dialog (select Key Bindings from the

The BlueJ Environment Reference Manual, Version 2.0

 13

Options menu) offers a full list of editor functions. It also shows a brief
explanation and the key combinations that call the function.

The following is an example of a key bindings dialog:

The functions are organised in groups. Choose a function group first to see a list
of functions in that group. The information area then shows a description of the
function and the key bindings list shows what key combinations call the
function.

4.5 Find Out What A Function Key Does

If you quickly want to check what function any key combination invokes in
Moe, type Ctrl-D and the key in question. If, for instance, you wonder what the
function key F5 might do, type [Ctrl-D] [F5]. Ctrl-D calls the function describe-
key. This function reads the next keypress and displays the name of the function
that is called by this key in the information area.

4.6 Change key bindings

In the dialog Editor Functions Find out what the editor can do (select Key
Bindings from the Options menu) you can specify which key should invoke a
specific editor function. Select the function you want in the list to the left then

Current Group

Information area Key Bindings List

The BlueJ Environment Reference Manual, Version 2.0

 14

select the Add Key button. BlueJ will now read the next key or key combination
you press and bind it to the selected function.

4.7 Make Stand-out comments

Sometimes it is useful to make a location in your source code stand out. For
example, if you are a teacher, and you want to give students a half-implemented
class and mark the places where they should enter code, you want them to find
those places easily. Or you want to leave notes for yourself marking sections of
unfinished work.

You can use stand-out comments for this. Stand out comments start with the
symbols /*# (that is: a normal comment symbol followed by a hash sign), for
example:

 public int getTotal()
 {
 /*# insert your code here */
 }
The only difference between normal comments and stand-out comments is that
they are displayed in a different colour (pink) in BlueJ's editor. The actual colour
can be changed by editing the file 'moe.defs'.

4.8 Use the auto-indent int the text editor

Many people like auto-indentation in their text editor. The BlueJ editor, simple
as it is, can do something like this.

Note that the auto-indentation that it will do is not a Java specific, sytax directed
indentation - it simply indents every line as the line above.

So, here is how:

The BlueJ editor provides a list of editor functions with flexible key bindings.
Select the "Key Bindings..." item from the "Options" menu to see the list.

Have a look at the functions in the "Edit Functions" category. You will see that
there are, amongst others, the following functions and key bindings:

KEY FUNCTION

Tab Insert-tab

Enter Insert-break

Shift-Tag Indent

Shift-Enter Insert-Break and indent

Using indent and insert-break-and-indent instead of insert-tab and insert-break
basically provides auto-indentation functionality. That means that using Shift-
Enter at the end of the line and Shift-Tab to indent will give you auto-
indentation.

You can now change your key bindings to make this the default behaviour. Use
the Key Bindings dialogue to change the bindings so that Enter is bound to
insert-break-and-indent and Tab is bound to indent. You can bind insert-tab and
insert-break to Shift-Enter and Shift-Tab.

The BlueJ Environment Reference Manual, Version 2.0

 15

This should give you simple auto-indent behaviour.

The BlueJ Environment Reference Manual, Version 2.0

 16

5 Execution

5.1 Create an object

To create an object of a class, right click the class and select a constructor for the
class. The constructors (if more than one) will be in the top part of the popup
menu and have the word new in front of them.

An object creation dialog will appear. This dialog may look like this:

In the name field, you have to enter a name for the object to be created. The
name has to be a valid Java identifier.

If the constructor has parameters, the dialog will also include fields to enter the
parameters. These fields are needed for the call of the constructor and are
identical to the fields in a normal method call dialog. See Call a method for
details.

Objects can only be created from compiled classes or applets.

Once the object is created, it will appear on the object bench (the area close to
the bottom of the main window) as a red box. The object icon shows its name
and class. For example:

5.2 Call a method

To call any method, you must first Create an object. Once you have the object on
the object bench, clicking it with the right mouse button will show a pop-up
menu which lists all methods of the object:

The BlueJ Environment Reference Manual, Version 2.0

 17

Select the method you wish to call.

If the method has parameters, you will have to Enter parameters.

After clicking OK, the method will execute, and function results (if any) will be
displayed in a separate window.

5.3 Enter parameters

If you Call a method (including a constructor) and that method has parameters,
then a parameter dialog will appear to let you enter parameters.

Enter the parameters in the field between the parenthesis or click into the history
list to re-use a previously typed parameter list. All parameters are written in
exactly the same way they would be written as part of a method call statement in
the source code of a class. Strings, for example, have to be written with quotes.

5.4 Execute a static method

When calling a static method you don’t need an object. Right click the class and
select the method in the popup menu.

If the method has parameters, you will have to Enter parameters.

After clicking OK, the method will execute, and function results (if any) will be
displayed in a separate window.

The BlueJ Environment Reference Manual, Version 2.0

 18

5.5 Execute a "main" method

A main method is the starting point of execution of a class. When the java
runtime environment is asked to execute a class, it will search for a main
method. The main method must be declared static and final. It also has to have
void as the return type. The main method takes an array of Strings as its only
parameter.

Executing the main method in BlueJ is done the same way as executing any
other static method. It can be called as described in Execute a static method. The
difference lies in the state of the virtual machine the method is executed in.
When the main method is run, it is given a fresh virtual machine to run in. This
means that no static members has been assigned a value by interactively called
methods. This is done to ensure that a program will behave the same when
executed from the command line as when executed from within BlueJ.

The Parameter for main is an array of string, this is written as a comma separated
list of strings enclosed in curled brackets. Remember that strings is in quotes. An
example:

{“some string”,”some other string”}

5.6 Execute an object that was returned by a method

If a method call returns an object that you want to examine or use further, you
can select that object in the function result dialog and then select the Get button.

Selecting Get will place that object onto the object bench where you can examine
or call it like any of your existing objects.

5.7 Use an object from the object bench as a parameter

You can use an object that lies on the object bench as a parameter to a method
call. To do this is simple: While you Enter parameters for the method simply
click on the object you want to pass in. This will insert the object's name into the
parameter list. (You could also manually type the object's name.)

The BlueJ Environment Reference Manual, Version 2.0

 19

5.8 Stop the execution of a blueJ program

menu: - shortcut: Ctrl+Shift+R
To interrupt a running BlueJ program, you can Open the debugger window and

click on the Halt button or you can right click on the work indicator:
and select “Reset Machine”

The BlueJ Environment Reference Manual, Version 2.0

 20

6 Debugging

6.1 Inspect an object

The most essential part of debugging is object inspection. Object inspection
allows you to look inside an object and see the current values of its instance
variables.

You can inspect an object by selecting the Inspect item from the pop-up object
menu or by double clicking the object.

To see the pop-up menu, click the object icon on the object bench with the right
mouse button. A menu will pop up that looks similar to this:

Under the method calls there are two special items. The second from the bottom
is Inspect. Select this to open the object. A dialog will be displayed that shows
all instance variables, their types and values.

If the value of a variable is itself a complex object, it is only shown as . If
you are interested in the details of such an object, you can inspect that object in
turn by selecting it and then clicking the inspect button.

The BlueJ Environment Reference Manual, Version 2.0

 21

The static fields can be inspected by clicking the Show static fields button.

In this way a whole data structure may be examined. If your structure is, for
instance, a linked list, you can inspect the objects referred to by the next field
until this field is nulll.

6.2 Set a breakpoint

editor:

menu: Tools/Set BreakPoint shortcut: Ctrl-b
There are two ways to set a breakpoint: You can select Set/Clear Breakpoint
from the Tools menu. This will set a breakpoint in the current line (the line the
cursor is in).

Or you can click in the tag bar (the area left of the source lines where break
points are displayed). Clicking in that area will set a breakpoint at the selected
position.

A breakpoint can only be set if the class is compiled. For a compiled class, the
tag bar appears white and accepts attempts to set break points. For a class that
has not been compiled the tag bar is grey and does not allow breakpoints to be
set.

6.3 Remove a breakpoint

editor:

menu: Tools/Clear BreakPoint shortcut: Ctrl-b
There are two ways to clear a breakpoint: You can select Set/Clear Breakpoint
from the Tools menu. This will clear the breakpoint in the current line (the line
the cursor is in). If there is no breakpoint in the current line, a breakpoint will be
set.

Or you can click directly onto the breakpoint displayed in the tag bar (the area
left of the source lines where break points are displayed). This will remove the
breakpoint.

The BlueJ Environment Reference Manual, Version 2.0

 22

6.4 Step through my code

To single step through your code, you must first Set a breakpoint. Once
execution reaches the breakpoint, the machine will be interrupted, the source
code currently executed will be shown and the debugger window will be opened
automatically. For example:

You can then use the Step or Step Into button to step through your code. The
current position in the code will be indicated by an arrow in the tag bar. The
arrow points to the instruction that will be executed next – that instruction has
not yet been executed.

The Step and Step Into buttons differ only if the next statement is a method call:
Step will execute the whole method and stop again at the next instruction after
the method. Step Into will go into the method and stop at the first instruction
within the method.

The BlueJ Environment Reference Manual, Version 2.0

 23

Continue may be used to continue execution normally (until execution finishes or
the next breakpoint is reached). Terminate may be used to terminate the
execution.

6.5 Inspect variable values in my program

If you want to inspect the value of instance variables between interactive method
calls, see Inspect an object.

If you want to see the value of local variables or instance variables at a particular
moment of the execution, Set a breakpoint at the place in the code where you
want to inspect the variable. Once execution reaches the breakpoint and the
debugger window is shown.

You can inspect any object listed in the variable list by double clicking it, just as
for interactive objects on the object bench, as described in Inspect an object.

The BlueJ Environment Reference Manual, Version 2.0

 24

6.6 Find out about the call sequence at a breakpoint

Once you have Set a breakpoint and the machine execution stops, you can find
out about the sequence of method calls that brought you to this particular piece
of code by looking at the debugger display. INSPECT VARIABLE VALUES IN MY

PROGRAM (6.5). The left half of the window shows the method call sequence
(currently open method calls). It presents a kind of stack display:

The method at the bottom of the list is the one that was interactively called, with
the call sequence progressing upwards in the list towards the current method at
the top.

Local and instance variables in intermediate methods can be inspected by
selecting the method in this call sequence list.

6.7 Open the debugger window

menu: View/Show Debugger shortcut: Ctrl-d
The debugger window opens automatically when the machine hits a breakpoint.

If you want to open or close the debugger window manually, you can do this by
selecting the Show Debugger toggle in the view menu.

Alternatively, you can right click on the work indicator: and select
“Show Debugger”.

The BlueJ Environment Reference Manual, Version 2.0

 25

7 The terminal window

7.1 Show/hide the terminal window

menu: View – Show Terminal shortcut: Ctrl-t
To show or hide the Text Terminal toggle the Show Terminal item in the View
menu. The text terminal is automatically popped up (shown if it was hidden or
de-iconified if it was iconified) if output is written to it or input is expected.

7.2 Clear the screen of the text terminal

terminal window:

menu: Options – Clear shortcut: Ctrl-k
To clear the text terminal, select Clear from the Option menu in the terminal
window.

The terminal can also be cleared from within a Java application by printing a
formfeed character (unicode 000C).
For example, like this:

 private void clearScreen()
 {
 System.out.print('\u000C');
 }

7.3 Save the program output to a file

terminal window:

menu: Options – Save to file… shortcut: Ctrl-s
The contents of the text terminal can be saved to a file. This may be useful to
document the output of a program. To save the terminal text, select Save to
File… from the terminal's Options menu.

7.4 Keep all output

terminal window:

menu: Options – Unlimited buffering shortcut: —
By default, the terminal buffers only the last 48 lines of output. If you want to
keep more of the output (for example to save it to a file later), switch on the
Unlimited buffering option from the terminal's Options menu.

The BlueJ Environment Reference Manual, Version 2.0

 26

With unlimited buffering, all output is kept in the terminal. This option can make
the output relatively slow if the application produces a lot of text.

7.5 Record which methods is called

terminal window:

menu: Options – Record method calls shortcut: —
With Record method calls switched on, the terminal window will output name
and parameters of each method call. To switch it on or off select Record method
calls in the terminal’s Option menu.

7.6 Clear the terminal window after each method call

terminal window:

menu: Options – Clear screen at method call shortcut: —
The terminal can be made to automatically clear the screen between method
calls. Select the Clear screen at method call option from the Option menu.

Switching on both Record method calls and Clear screen at method call, will
result in the method call being displayed as a sort of header with the output from
the call beneath it. This can then be saved to disk or put in the clipboard.

The BlueJ Environment Reference Manual, Version 2.0

 27

8 The code pad

8.1 Show/hide the code pad

menu: View – Show Code Pad shortcut: Ctrl-e
To show or hide the Code Pad, toggle the Show Code Pad item in the View
menu. The Code Pad is shown to the right of the object bench.

8.2 Evaluate a simple expression

The code pad can be used to evaluate simple expressions.

Expressions can refer to standard Java values and objects, as well as classes from
the current project. The code pad will display the result value, followed by its
type (in parenthesis), or an error message if the expression is incorrect.

Examples are:

4 + 45
"hello".length()
Math.max(33, 4)
(int) 33.7
javax.swing.JOptionPane.showInputDialog(null, "Name:")

8.3 Evaluate multi line expressions

Sequences of statements or statements spanning multiple lines can be entered by
using shift-Enter at the end of the input line. Using shift-enter will move the
cursor to the start of the next line, but not (yet) execute the input. At the end of
the last input line type Enter to evaluate all lines together. Try, for example, a for
loop:

for (int i=0; i<5; i++) {
 System.out.println("number: " + i);
}

8.4 Enter statements

The code pad can be used to execute statements (that is: Java instructions that do
not return a value). Examples are:

System.out.println("Gurkensalat");
System.out.println(new java.util.Random().nextInt(10));

Statements are correctly evaluated and executed with or without semicolons at
the end.

The BlueJ Environment Reference Manual, Version 2.0

 28

8.5 Use variables

Local variables in the code pad, are only useful as part of multi-line statement
sequences, since variables are discarded between separate inputs. An example:

int sum;
sum = 0;
for (int i=0; i<100; i++) {
 sum += i;
}
System.out.println("The sum is: " + sum);

Entering the same sequence as separate input statements, will fail, since the local
variable sum is not remembered between inputs.

All code that is legal to write in the body of a Java method is also legal in the
code pad. However, every text input typed, forms the part of a different method,
so one line of input cannot refer to a variable declared in another.

Object bench variables behave as instance fields. They cannot be defined from
within a method body (or from the code pad), but they can be referred to and
calls to the objects held in them can be made.

8.6 Inspect object on the code pad

To inspect an object that was returned as a result from a code pad expression,
without placing it onto the object bench: just double-click the object's icon to
open the usual object inspector.

8.7 Move objects to the object bench

Some expression results are objects, rather than simple values. In this case, the
result is shown as <object reference>, followed by the type of the object, and a
small object icon is painted next to the result line.

The small object icon can be used to continue working with the resulting object.
Point to the icon and drag it onto the object bench. This will place the object onto
the bench, where it will be available for further calls to its methods, either via its
popup menu or via the code pad

The BlueJ Environment Reference Manual, Version 2.0

 29

Some expressions that will create objects are:

new Student()
"marmelade".substring(3,8)
new java.util.Random()
"hello" + "world"

8.8 Reuse previously executed statements

The code pad keeps a history of previously used inputs. Using the up or down
arrow keys, previous input lines can easily be recalled, and edited before being
reused.

The BlueJ Environment Reference Manual, Version 2.0

 30

9 Configuration

9.1 Change BlueJ settings using bluej.defs

There are two ways to change configuration settings in BlueJ: User options are
changed from within BlueJ. Use the preferences dialog to change those settings.

Administrator options are changed by editing the configuration file
bluej.defs. The configuration file is at <BLUEJ_HOME>/lib/bluej.defs
(where <BLUEJ_HOME> is the directory where BlueJ was installed).

The configuration file contains a list of properties in the format

 property-name = value
The property names should not be changed. The values may be changed to alter
the configuration. It is a good idea to make a backup of this file before you edit
it.

All properties in the bluej.defs file apply to all users on the system. There is
also a user specific configuration file for each user. It is stored in

 <USER_HOME>/.bluej/bluej.properties (Unix)

or

 <USER_HOME>\bluej\bluej.properties (Windows)

The <USER_HOME> directory may vary on single user systems. Search for a file
named "bluej.properties" if you are not sure where it is on your system.

Each of the properties in system configuration file (bluej.defs) can be
specified in the user configuration file. Settings in the user configuration file
override the settings in the system configuration file.

The individual properties are described in the next few sections of this manual.

9.2 Change BlueJ settings using invokation parameters

BlueJ accepts invokation parameters in the format

 -Dproperty-name=value

The propery-names and their values are the ones from the bluej.defs file (See
Change BlueJ settings using bluej.defs) which is described in the next few
sections of this manual.

To change the interface language of BlueJ to german, BlueJ can be invoked like
this:

 java -jar bluej.jar -Dbluej.language=german (Unix)

or

 bluej.exe -Dbluej.language=german (Windows)

The BlueJ Environment Reference Manual, Version 2.0

 31

9.3 Find bluej.defs on my MacOS X

Change BlueJ settings explains how various BlueJ settings can be configured:
you can edit the 'bluej.defs' file. On systems other than MacOS this was found
in the 'lib' directory. On MacOS, there is no 'lib' directory - so where's the file?

Mac users can edit this file, too. To find it, Ctrl-click the BlueJ application and
select 'Show Package Contents'. Then navigate your way down the folders
Contents/Resources/Java. Here, you will see the file 'bluej.defs' (and all
other BlueJ configuration files, including moe.defs and the language
directories). The files can be edited with any text editor that saves plain ASCII
text.

9.4 Use the preferences dialog

main window:

menu: Tools – Preferences… shortcut: —

editor:
menu: Options – Preferences… shortcut: —
To set user preferences from within BlueJ, choose Preferences… from the menu.

The preferences you can specify here are stored in the user configuration file.
(See Change BlueJ settings for more information about this file.) User
preferences, if changed, will override the settings in the system configuration
file.

The settings that can be changed using the preferences dialog include the editor
font size, use of syntax highlighting and the Java documentation.

9.5 Add additional help menu items

Users can add their own menu items to the help menu. Each menu item, when
selected, will open a URL in a web browser.

New items are listed in the bluej.help.items property in the form

bluej.help.items=<tag_1> <tag_2>

For every tag, there should be two additional properties:

bluej.help.<tag_1>.label=<menu_label>

bluej.help.<tag_1>.url=<url to open>

The label will apppear in the menu, the url will be opened in the browser.

9.6 Change my home directory

This is also defined by Java, and if that's fine for you, don't specify this property.
This property, if specified, will override Java's user.home property. The property
is:

bluej.userHome=<home_dir>

The BlueJ Environment Reference Manual, Version 2.0

 32

9.7 Use a local copy of the documentation

Three menu items in the BlueJ help menu display the BlueJ tutorial, the BlueJ
reference manual and the Java standard class libraries. Invoking these functions
opens a web browser which, by default, displays documents on a remote web
site. You can change the URL to be opened to point to a local copy of these
documents. This can improve efficiency and allow you, if installed on the local
machine, to use the documentation while being offline. The BlueJ tutorial and
reference manual can be downloaded from the BlueJ web site; the Java
documentation can be downloaded from Sun at java.sun.com.

To change the URLs, edit the values for the following properties:

 bluej.url.tutorial
 bluej.url.reference
 bluej.url.javaStdLib

If your web browser is not opened by these functions, see Configure the web
browser.

9.8 Configure the documentation generation

Specify the command used for generating documentation by editing the property

 doctool.command=javadoc

by default the javadoc command located in the JDK directory that was used to
launch BlueJ is used.

Change the options given to the doctool command by editing the propety

 doctool.options=-author –version –nodepricated –
package

For instance, if you want private methods included in the documentation, change
“-package” in the options to “-private”. Consult the documentation for javadoc at
java.sun.com for more options.

To change the directory name within the project directory where the
documantation is stored, edit the property

 doctool.outputdir=doc

If "linkToStandardLib" is true, we will try to use the URL specified in the
"bluej.url.javaStdLib" property, to create links. If that URL is not accessible,
documentation generation will fail. Therefore, if you want to work offline, set
"linkToStandardLib" to false (you can also do that from within BlueJ in the
Preferences dialog).

The BlueJ Environment Reference Manual, Version 2.0

 33

9.9 Change the way applets are executed

If the appletViewer.command line is commented out (default), the viewer
command is located in the JDK directory that was used to launch BlueJ. Edit the

 appletViewer.command=appletviewer

property to specify another appletviewer.

9.10 Specify libraries that are to be used in all projects

Sometimes, you may want to make your own libraries generally available in
the same style as the Java standard libraries. For example, you may have
your own package called "simpleIO" that you want to use. Then you may want
to be able to write

 import simpleIO.*;

without the need to copy all the simpleIO classes into every project.

This can be done in two ways.

Using the dialog

Open the "Preferences" dialogue and select the "Libraries" tab. Then add the
location where your classes are as a library path. Restart BlueJ.

One small thing to look out for: if the classes are in a jar file, select the jar file
itself as the library. If your classes are in a named package directory structure
(for example in a directory named "simpleIO"), choose the directory that
contains simpleIO (not the simpleIO directory itself) as the library!

The BlueJ Environment Reference Manual, Version 2.0

 34

Using userlib

Inside the lib directory of BlueJ installation there is a directory called “userlib”.
Any class libraries added as .jar or .zip archives to the userlib directory are
automatically added to BlueJ’s list of system libraries (called the classpath), for
all projects to use. The added libraries will be visible in the “Libraries” pane of
BlueJ’s Preferences dialog (Tools – Preferences – Libraries) and can be imported
in projects as if it was a Java standard library.

The classes made available by a library can also be use interactively with the
“Use Library Class” function (See Create Objects from Available Library
Classes) or the “Evaluate Expression” (See Evaluate a single expression)

9.11 Specify libraries that are to be used in a single project

Create a folder in the projectfolder and call it “+libs” (without the quotation
marks) and put the jar files in that folder.

The classes made available by a library can also be use interactively with the
“Use Library Class” function (See Create Objects from Available Library
Classes) or the “Evaluate Expression” (See Evaluate a single expression)

9.12 Configure the web browser on non mac/win32 systems

The command used to start your web browser is defined through the properties

 browserCmd1
 browserCmd2

BlueJ will first use the first property (Cmd1). If that fails, it will try the second
one (Cmd2). A dollar sign ($) in the value will be replaced by the URL to be
opened. The default values for Unix are

 browserCmd1=netscape -remote openURL($)
 browserCmd2=netscape $

These commands first attempt to open the URL in an already running instance of
Netscape and, if that fails, start a new Netscape browser. You can edit these
commands if, for instance, Netscape is not in your path or you want to use a
different browser.

On windows or mac systems, BlueJ will use the build-in facility to open the
default browser.

9.13 Change fonts

Fonts are specified using the following properties:

bluej.fontsize (font size for most interface components)
bluej.editor.fontsize (font size for editor)

The BlueJ Environment Reference Manual, Version 2.0

 35

bluej.editor.font (font face for editor)
bluej.fontsize.printText (font size for printed source)
bluej.fontsize.printTitle (font size for printout title)
bluej.fontsize.printInfo (font size for print footer)

All font sizes are integer numbers.

The only font face that can be specified is the font used in the editor for showing
class sources. Font faces are specified using a font family name followed by an
optional "-bold". Examples are

 bluej.editor.font=Monospaced
 bluej.editor.font=Monospaced-bold
 bluej.editor.font=SansSerif
 bluej.editor.font=Arial-bold

The only fonts guaranteed to exist on all Java platforms are Monospaced, Serif,
SansSerif and Symbol. It is generally preferable to use monospaced fonts for
editing source code. Sources using a mix of TABs and spaces will not line up
with other fonts.

9.14 Change the interface language

The interface language can be changed using the property

 bluej.language

Supported language currently include English, German, Swedish, Afrikaans,
Chinese, Czech, French, Italian, Japanese, Korean, Portuguese, Spanish.

Language specific files are stored in <BLUEJ_HOME>/lib/<language> (where
<BLUEJ_HOME> is the directory where BlueJ was installed and <language> is a
directory with the same name as the language). The language directories contain
several text files with BlueJ interface texts.

If your preferred language is not included, it is easy to make a language
definition yourself. This is how:

• Copy the directory of a language you understand to a new name representing
your language (e.g. copy the directory "english" to "spanish").

• Open each file within the "spanish" directory with a text editor and translate
the texts.

• Set the language property in the configuration file to

 bluej.language=spanish

If you make a translation for a new language for a new language, please send
your translation to bluej@bluej.org - we will then include your language
definition in the next release of BlueJ.

9.15 Use a default location for projects

The property

The BlueJ Environment Reference Manual, Version 2.0

 36

 bluej.defaultProjectPath

can be used to specify the default location of BlueJ projects. The file selection
dialog BlueJ uses to open projects will start in the directory specified in this
property.

9.16 Switch syntax highlighting on/off

The property

 bluej.syntaxHilighting

is a boolean property (its values are true or false) for switching syntax
highlighting on or off. This property provides the default. Users can modify this
setting using their preferences dialog.

9.17 Switch automatic indention on/off

The property

 bluej.autoIndent

is a boolean property (its values are true or false) for switching autoindention
on or off. This property provides the default. Users can modify this setting using
their preferences dialog.

9.18 Switch linenumbers on/off

The property

 bluej.displayLineNumbers

is a boolean property (its values are true or false) for switching the showing
of linenumbers on or off. This property provides the default. Users can modify
this setting using their preferences dialog.

9.19 Switch bracket matching on/off

The property

 bluej.matchBrackets

is a boolean property (its values are true or false) for switching
bracketmatching on or off. This property provides the default. Users can modify
this setting using their preferences dialog.

The BlueJ Environment Reference Manual, Version 2.0

 37

9.20 Set the tab size

The property

 bluej.tabsize

allow users to specify how many spaces a tab is to be substituted with. This
property provides the default. Users can modify this setting using their
preferences dialog.

9.21 Make BlueJ backup my sourcefiles

The property

 bluej.makeBackup

is a boolean property (its values are true or false) for switching backup on or
off. This property provides the default. Users can modify this setting using their
preferences dialog. When backup is active, a backupfile is created in the same
directory as the original each time the original is saved. The backupfile has the
same name as the original with a ‘~’ appended.

9.22 Change the compiler BlueJ uses

The property

 bluej.compiler.type

sets the type of the compiler. Currently supported types are: internal, javac and
jikes. The propery

 bluej.compiler.executable

specifies the name of the executable to run as the compiler. If it is not specified
then BlueJ defaults to the standard name of the specified compiler type (ie javac
for type javac and jikes for type jikes).

9.23 Make BlueJ write debug output to a logfile instead of the console

The propery

 debug

specify what BlueJ should do with debug output. When on, debug output goes to
the console; when off it is written to a log file in the user’s bluej settings
directory. The propety

 bluej.debugLog = debug.log

specify which filename should be used.

The BlueJ Environment Reference Manual, Version 2.0

 38

9.24 Stop BlueJ from optimizing my code

menu: Tools/Preferences…/Miscellaneous/Use optimization
Optimization is on by defalt. Deselect this option to have BlueJ produce
unoptimized bytecode. This will ensure that debugging doesn’t fails because of
difficulties with optimized code.

9.25 Make BlueJ place the menubar at the top of the screen on my mac

The property

 bluej.macos.screenmenubar

is a boolean property (its values are true or false) for placing the menubar at
the top of the window or at the top of the screen. This property only applies to
the line of mac os’. This property provides the default.

9.26 Change the default dimensions of the terminal window

The properties

 bluej.terminal.height=22
 bluej.terminal.width=80
allow users to set the default dimensions of the terminal window.

9.27 Change the colours

The properties

 colour.background=208,212,208
 colour.graph.background=255,255,255
 colour.text.bg=255,255,255
 colour.text.fg=0,0,0

 colour.arrow.uses=0,0,0
 colour.arrow.implements=0,0,0
 colour.arrow.extends=0,0,0

 colour.target.border=0,0,0
 colour.target.bg.compiling=200,150,100
 colour.target.shadow=192,192,192
 colour.target.stripes=152,152,152

 colour.class.bg.default=255,221,153
 colour.class.bg.abstract=255,221,153
 colour.class.bg.interface=255,221,153
 colour.class.bg.unittest=160,65,13
 colour.package.bg.default=180,130,44

 # object bench
 colour.wrapper.bg=205,38,38
 colour.wrapper.shadow=152,152,152

The BlueJ Environment Reference Manual, Version 2.0

 39

 colour.menu.environOp=152,32,32

allow users to set the default colours of BlueJ.

9.28 Modify class templates

When creating new source files, BlueJ provides a default template for the source
text. These templates are stored in
 <BLUEJ_HOME>/lib/<language>/templates/newclass
 where <BLUEJ_HOME> is the directory where BlueJ was installed and
<language> is the directory with the name of the intended language.

The templates and their file names are

• template for standard Java class (stdclass.tmpl)
• template for interface (interface.tmpl)
• template for abstract classes (abstract.tmpl)
• template for Applet source (applet.tmpl)
• template for JApplet source (japplet.tmpl)
• template for applet web page (html.tmpl)
• template for project note (readme.tmpl)
• text added to project note when exporting (readmeexp.tmpl)

The file "shell.tmpl" is for internal use and should not be modified.

If you want to use a different default text for sources, you can modify these files.
If you want to use different templates on a per-user-basis, different files can be
created, and the template properties can be modified in the user configuration file
to point to these files. The template properties are named:

 template.*

Change the directory for templates

The propery

 bluej.classTemplatePath

is a path that direct BlueJ to the template directory.

Note: if the path contains backslashes, they must be written as double-
backslashes (see example in bluej.defs).

There is a tip for teachers who work with labs of machines. What if you like the
templates to change in the middle of the semester? Maybe you want different
text in the template, or maybe you want additional templates altogether. Often,
universities do not allow installations to be changed during term.

To do this, you can configure you initial installation to use a shared template
directory. This is done by setting the bluej.templatePath property to point to a
shared location, and templates will be read from this directory. For example:

 bluej.templatePath = F:\\shared\\bluej\\templates

The BlueJ Environment Reference Manual, Version 2.0

 40

If you edit the templates, or create new template files in this directory at any
time, these templates will be available at the next start of BlueJ.

9.29 Add new class templates

When creating a new class a list of templates is presented to choose from. To add
a template, create a new file in the directory

 <bluej>/lib/<language>/templates/newclass

with a “.tmpl” suffix (for example mainClass.tmpl) Names for applets,
interfaces or abstract classes should start with "applet", "interface" or "abstract",
respectively. Everything else will be treated as a standard class.

The variables $CLASSNAME and $PKGLINE will be substituted for the name
of the class and the appropriate package statement, respectively.

The label with which the class is denoted in the “New Class” dialog can then be
set by adding the property

 pkgmgr.newClass.<template-name>=<label>

to the file <bluej>/lib/<language>/label

If a new class called “mainClass.tmpl” has been created in the template
directory, the property

 pkgmgr.newClass.mainClass=Class with main

will make the “New Class” dialog list the new class as “Class with main”

The order in which the templates is listed in the “New Class” dialog is can be set
by the property

 bluej.classTemplates=stdclass abstract interface applet

in bluej.defs. Each item in the list is a filename for a template to be found in the
template directory. To add a new template see Add new class templates

9.30 Use different template for new methods

When creating new methods in classes, BlueJ provides a default template for the
source text. This template is stored in
 <BLUEJ_HOME>/lib/<language>/templates/method.tmpl
where <BLUEJ_HOME> is the directory where BlueJ was installed and
<language> is the directory with the name of the intended language.

If you want to use a different default text for source, you can modify this file.

The BlueJ Environment Reference Manual, Version 2.0

 41

10 Unit testing

10.1 Enable the unit testing functionality

menu: Tools/Preferences…/Show unit testing tools

The explicit testing support in BlueJ is initially disabled. To use the testing tools
select Tools – Preferences... and select the checkbox labelled Show
testing tools.

10.2 Create test classes

context menu: Create Test Class

Right click a class and select the Create Test Class item from the popup
menu. The test class is automatically named by adding a “Test” suffix to the
name of the reference class.

10.3 Create test methods

context menu: Create Test Method…
Start by selecting Create Test Method... from the context menu of the test
class.
After selecting this function, the user is prompted for a name for this test. Test
names always start with the prefix “test” - if the chosen name does not start with
“test” this will be automatically added. Thus, typing “testName” or “name” will
both result in creating a test method called “testName”.
After typing the name and clicking OK, all interaction will be recorded as part of
this test. The ‘recording’ indicator is on, and the buttons to end or cancel this test
recording are enabled as shown below.

The BlueJ Environment Reference Manual, Version 2.0

 42

To create a test, do the following:

• Create an object of the class you want to test.
• Call a method that sets the relevant data. You can call as many methods

as you like.
• Call a method that returns a variable you now expect to have a curtain

value.
You will now see the result dialog. While you are recording tests, the result dialog
includes a part that lets you specify assertions on the result (see below). Use this
assertion facility to specify the expected outcome of the test.

Several different kinds of assertions are available from the popup menu,
including tests for equality, null, and not null.
This concludes the test case, so you can now click 'End' under the test
recording indicator to end the recording of the test.
Ending the test results in a test method being added to the test class. This test
method is then available for running.
You can use the recording 'Cancel' button to end the recording and
discarding it.

The BlueJ Environment Reference Manual, Version 2.0

 43

10.4 Run tests

Run all tests by clicking the Run Tests button.

Individual tests are run by selecting them from the test class' context menu.

When a test is run individually, one of two things will happen: if the test is
successful (the assertions in the test hold) a brief note indicating success is
shown in the project window's status bar at the bottom of the window. If the test
fails (an assertion fails or any other problem occurs) a test result window is
displayed presenting details about the test run. See Interpret test results.

If all tests are run, the test result window is always displayed to show the
outcome of the tests.

10.5 Interpret test results

The test result windows shows a summary of test runs and can display failure
details.

When tests have been executed, the Test Result window displays a summary of
the testing outcomes (see above). The top pane of that window shows a list of all
executed tests, tagged with an icon indicating their success or failure. A green
tick mark indicates a successful test, a grey cross indicates a test failure and a red
cross marks an error.

The number of executed tests, errors, and failures is also summarised in the
middle section of the window.

A test has a failure (grey cross) if one of its assertions does not hold. For
example, the test assertion may specify that a particular method result should not
be null, but in this case it was.

The BlueJ Environment Reference Manual, Version 2.0

 44

A test has an error, if its execution resulted in any other kind of error, such as an
unexpected exception being thrown.

For any unsuccessful test, details about its failure can be displayed by selecting
the test in the list. The lower pane in the window then displays detail information
about this failure or error.

The bar in the middle of the test window is the main summary of the test run: if
it appears green, all is well - all tests have been successful. If it is red, there is a
problem - at least one test has failed.

Note that on MacOS this bar does not change colour.

10.6 Create a testfixture

To create a fixture for a test class, create the desired objects on the object bench
and then invoke the context menu of the test class which needs the fixture. Now
select Object Bench To Test Fixture from the context menu. The
objects in the testfixture will be created before, and removed after, the
invokation of each test method.

10.7 Modify an existing testfixture

To add or remove a class from a testfixture, select Test Fixture to
Object Bench from the context menu of the test class. Add or remove
objects to the object bench as usual then select Object Bench to Test
Fixture from the context menu.

10.8 Write test methods by hand

Select Open Editor from the test class’ context menu. This will open the
editor showing the code for the test class. You can now write test methods by
hand. Each test method name must start with ‘test’, be public and have void as
return type.

10.9 Write tests first

The eXtreme Programming methodology suggests that tests should be written
before the implementation of any method. Using BlueJ's unit test integration this
can be done in two different ways.

Firstly, tests can be written by hand, as explained in the previous section. Test
writing then works the same way as in non-BlueJ implementations of JUnit.

Secondly, you can create method stubs in the reference class, returning dummy
values for methods with non-void return types. Then create tests by using the
interactive recording facility, and write assertions according to your expectations
of the finished implementation.

The BlueJ Environment Reference Manual, Version 2.0

 45

10.10 Test multiple classes

To create a test class that isn’t attached to a single reference class, click the New
Class… button and select Unit Test. Unattached test classes can be used in
the same way as other test classes.

10.11 Test a GUI component

It is possible to fake a click of a button using this method.

public void fakeAction(Component c) {
 getToolkit().getSystemEventQueue().postEvent(
 new ActionEvent(c, ActionEvent.ACTION_PERFORMED, ""));
 }

The BlueJ Environment Reference Manual, Version 2.0

 46

11 Miscellaneous

11.1 Use the file selection dialog

Use the directory list or the “Look In” dropdown to select a directory where you
want to create the new BlueJ project. Type a name for the project in “File
Name” field, and click Create.

Note that other BlueJ projects is listed with a different icon than ordinary folders.

Icons:

 : Another BlueJ project

11.2 Make BlueJ find my file, picture or other resource.

Here is a common problem: You want to access a file on disk (maybe an
image, maybe a text file, or anything else for that matter), and you need to
specify the name. You write some code similar to this:

Image image = new ImageIcon("myImage.gif").getImage();

or

FileInputStream stream = new FileInputStream("myFile.txt");

The BlueJ Environment Reference Manual, Version 2.0

 47

Then you discover that it doesn't work. (Or, as some people wrote to us, it
"works when I run it from xxx, but not from BlueJ".)

So why is that?

Most people put their image or text file into the project directory, and then
want it to be found. The problem is that this depends on the system's "current
directory". This is not a BlueJ-specific problem, but a general Java problem.
Only, you may discover it for the first time when you use BlueJ.

The current directory is the directory you used when you start Java. When you
use BlueJ, the current directory is the directory where you started BlueJ. If
you started BlueJ from a DOS window, it is that current directory of that DOS
window. If you started BlueJ, say, with a shortcut from the desktop, then it is
the desktop.

This means that the above code fragments will probably not find the files
when you run them in BlueJ. On the other hand, if you run Java from the DOS
window, as below, it may work:

C:\> cd myProject
C:\myProject\> java MyClass

So is BlueJ wrong? No, because you should never assume that you know what
the current directory is when your code runs. Consider the following way to
start your Java class through the DOS window, which is an equally valid way
to start your application:

C:\> java myProject\MyClass

This command will also start your class, but your code trying to load the file
will fail, because now the current directory is different.

In other words: Writing code that relies on the current directory is usually a
bad idea, and it is prone to break at any moment.

That leaves the question: what should I do instead? The answer is: Use the
"getResource" method from java.lang.ClassLoader. This method will find a file
anywhere in the current classpath. And the BlueJ project directory is always in
the classpath, so it will always find a file there, no matter what the current
directory is.

Here is a code example using this method to load an image:

public Image getImage(String fileName) {
 URL imageURL =
 getClass().getClassLoader().getResource(fileName);
 if(imageURL == null)
 return null;
 return new ImageIcon(imageURL).getImage();
}

Here is a code example reading a text file using getResource:

public InputStream openFile(String fileName)
 throws IOException
{
 URL url = getClass().getClassLoader().getResource(fileName);
 if(url == null)
 throw new IOException("File not found: " + fileName);
 return url.openStream();
}

The BlueJ Environment Reference Manual, Version 2.0

 48

The "getClass()" method is defined in class Object, so it is available in every
object. Class URL is in the package java.net. Using this code, your program
should work independently of how it was started.

11.3 Select more than one class or package in the class diagram

Click and drag a marquee over the classes that are to be selected. Unselected
classes can be added to the selection by clicking them while holding down the
CTRL or SHIFT key (on mac it’s SHIF or META).

Clicking and dragging a marquee over an uselected set of classes while holding
down CTRL or SHIFT key will add these classes to the existing selection.

Classes already in the selection can be taken out by clicking them while holding
down CTRL or SHIFT.

The marquee will only add classes to the selection, not take them out.

Right clicking a class in a selection will limit the selection to that class.

The BlueJ Environment Reference Manual, Version 2.0

 49

12 Troubleshooting

12.1 Get the error messages produced by BlueJ

menu: Help/About BlueJ
Select About BlueJ in the Help menu. This will display a window that tells you
which operating system your machine is running, which virtual machine BlueJ is
running on, and where it is installed. Most importantly it will tell you the
location of the BlueJ Debug log file. This file contains the above information and
a log over error messages produced by BlueJ. In case you ever contact the BlueJ-
Support team, make sure you attach this file to your email.

