

BlueJ Teamwork Tutorial

Version 2.0
for BlueJ Version 2.5.0 (and 2.2.x)

Bruce Quig,
Davin McCall

School of Engineering & IT,
Deakin University

 2

Contents

1 OVERVIEW .. 3

2 SETTING UP A REPOSITORY .. 3

3 ENABLING TEAMWORK FEATURES 3

4 SHARING A PROJECT ... 5

5 CHECKING OUT A PROJECT .. 8

6 CHECKING THE PROJECT STATUS 10

7 UPDATING YOUR LOCAL VERSION.................................... 11

8 COMMITTING CHANGES... 13

9 CHECKING PROJECT HISTORY... 14

10 RESOLVING CONFLICTS ... 15

 3

1 Overview
The BlueJ Teamwork features aim to provide tool support for students to be able to
work in small teams on programming tasks, projects and assignments. This has been
implemented by providing support for a subset of the version control functionality of
standard version control systems. BlueJ’s teamwork features do not expose students
to the full variety of capabilities that version control systems such as CVS and
Subversion possess.
A carefully chosen subset of capabilities is supported, allowing students to work
together on projects. It supports the main teamwork activities of:

• sharing projects by placing them in a central repository,

• checking out copies of projects from the repository,
• updating local copies,

• committing local changes to the repository version,
• handling merge conflicts,

• providing project status queries,
• and viewing the project history/log.

The teamwork features are implemented over the top of two existing systems, the
Concurrent Versioning System (CVS) and (since BlueJ 2.5.0) Subversion. Our aim is
to expose students to general version control concepts without exposing them
specifically to the inner workings of CVS or Subversion any more than is necessary.

2 Setting up a repository
One of the key requirements needed to use BlueJ’s Teamwork features is a correctly
configured CVS or Subversion repository. There are many ways in which such a
repository can be configured successfully.
Information on how to set up repositories, either simple ones for single user projects,
or access-protected repositories for groups projects, is provided in a separate
document (BlueJ Teamwork Repository Configuration).

Unless you have a suitable repository correctly configured and accessible, it is not
possible to use BlueJ’s Teamwork features.

3 Enabling teamwork features
To help keep BlueJ’s user interface as clean and simple as possible, the teamwork
features are hidden by default. To enable them, a user should choose the
Tools>Preferences… menu option (BlueJ> Preferences... on Mac OS X). This will
show BlueJ’s Preferences Dialog (Figure 1). Under the Miscellaneous tab there is a
check box labelled Show teamwork controls which needs to be checked.

 4

Figure 1 BlueJ Preferences Dialog: Show teamwork controls

Upon pressing Ok the Teamwork features should now be visible. In the main BlueJ
window there will be three additional buttons (Update, Commit and Status) which are
disabled for any project which is not currently being shared (Figure 2).

Figure 2 Greyed out teamwork controls in main BlueJ window

 5

There is also an additional Team sub-menu under the Tools menu, which provides
some additional Teamwork actions (Figure 3). Two of these will be enabled: Share
this Project and Checkout Project.

Figure 3 Teamwork menu options

4 Sharing a project
The starting point for interacting with BlueJ’s Teamwork features for most users will
be one of the two menu options mentioned above. These allow you to share an
existing local project (which will place it into a shared repository), or to checkout a
copy of a project already in a repository. In this section we describe how to share an
existing project. You will need to know the details of the repository that you want to
place the project in.
Open the existing local BlueJ project that you would like to share (by placing into an
existing repository). Select the Tools>Team>Share this Project menu option. At this
point you will see a Team Settings dialog that requires information about the
destination repository (Figure 4).

 6

Figure 4 Team Settings Dialog

The following information is required:

User
This is your username that is required for access to the repository. This will typically
be your login name for the machine on which the repository is located.

Password
This is the associated password for the username specified above to allow repository
access. At various stages when using the BlueJ Teamwork features you will be asked
to provide a password for the repository before Teamwork operations are undertaken.
These passwords are not permanently stored, and are asked for whenever a Teamwork
operation is invoked upon a newly opened project. Once you have supplied this
information it is remembered for any further operations during that session.

Group (optional)
Group is an optional field. It is not needed if you are only trying out BlueJ Teamwork
features, or you are interacting with a single repository. It is a field that can be used
by teachers or system administrators to allow for the specification of separate
repositories for each student team. The group name is used to append another
directory to the location of the repository path. This can be left blank if not required.

 7

Server type
This is the type of version control server software – as of BlueJ version 2.5.0 there are
two server types supported: CVS and Subversion. You need to choose the correct
option for the server that you are connecting to. The administrator of the repository
should be able to provide this information (as well as the correct settings for the next
three fields).

Server
This is the name or IP address of the server on which the repository is located. This
can be a local or remote machine. Eg. cvs.myservername.org

Repository Path
This is the file system location on the server at which the repository can be found. Eg.
/home/cs101/cvsroot

Protocol
This is the communication protocol to be used when communicating with the server.
Which options are available will depend on the server type which has been selected.
For CVS, there are two options; Pserver is a CVS specific protocol that can be used
for accessing a CVS repository. Ext, using SSH as a transport, is also supported and
provides greater security, as well as being more likely to be usable through firewalls.

For Subversion, there are three options: svn (roughly the equivalent of CVS’ pserver),
svn+ssh (equivalent to ext) and http (a slow protocol, but which may be usable in
situations where neither svn nor svn+ssh is).
The administrator of the repository will tell you which protocol to use.

If you are likely to connect to the same server in the future, you can store the server
details as the default values by checking the Remember setting for future projects
checkbox.

Once all of this information has been provided, it is possible to check whether a
connection is possible with those settings by trying the Check Connection button. The
success of creating a connection to the server using the specified username, password
and server details is then given (Figure 5).

 8

Figure 5 Successful connection

If the connection was successful, you can press the Ok button to proceed with sharing
the project. As this operation may involve communications with a remote machine
this may take some seconds. You will see an activity bar in the bottom right hand area
of the main BlueJ window. Once the operation has successfully completed, this
progress bar will be removed and the three Teamwork action buttons on the left side
of the BlueJ main window will now be enabled.

You project has now been copied into the repository and is available there to be
checked out by other developers.

Not all of the project files are included in the repository. Some file types are excluded,
the main ones being any compiled java class files found, and any generated Javadoc
API documentation files for your project. These can easily be generated inside BlueJ
by compiling source files and generating documentation for the project. Any other
files that your project may require (such as image files) that are located within the
project directory are automatically included. If your project uses a +libs subdirectory
for accessing required libraries, this is also included in the repository.

5 Checking out a project
The other main way of initially interacting with BlueJ’s Teamwork features is to
checkout a copy of an existing shared project that is located in a shared repository.
The process of checking out a project downloads a copy of that shared project from
the repository on to your computer.
If you choose the Checkout Project menu option you will be presented with a Team
Settings Dialog similar to the one described above in Sharing a project. Once the
required information is given and Ok is pressed a Project Selection Dialog is
presented (Figure 6) to let you select the project to checkout.
If you know the exact name of the project that you want to checkout you can specify
it in the upper text area and choose Ok.

 9

Figure 6 Project Selection dialog

Alternatively, if you are not sure of the exact project name or would like to browse
the existing projects within the repository, you can select the Show button. This
searches the repository for all available projects and displays them in a list (Figure 7).
A project can then be selected for checking out. Once a project name is entered or
selected the Ok button will become enabled.

Figure 7 Browsing existing projects

The next step is to specify where on your local system you would like the project to
be stored (Figure 8). All of the project files will be downloaded inside a folder that
has the same name as the project. BlueJ will create this folder – you only need to
specify where you would like this folder to be located.

 10

Figure 8 Choosing location for checked out project

Once you have selected the location for the checked out project and selected the
Checkout button, the project will be copied from the repository and a local BlueJ
project will be created. You can now work with this project normally and make
modifications.

6 Checking the project status
A shared project exists in several separate copies. One copy resides in the repository,
and one copy exists locally on the machine of each developer. The local copies are
often changes by separate developers simultaneously.

The Status command, accessed by the Status button in BlueJ’s main window, allows
you to check the status of each class to find out whether it has been modified, either in
your local version or in the repository. This information is then presented in a Status
Dialog (Figure 9).

 11

Figure 9 Teamwork status dialog

Figure 9 shows a Status dialog listing the resources for a project. The name of the
resource is listed in the left column (Team Resources). The middle column shows the
repository version number of each resource. Each time a resource is modified in the
repository its version number is incremented. The status of each resource is shown in
the right hand column (Teamwork status). In this case most of the files are listed as
Up-to-date meaning that the repository version and your local version are exactly the
same.
The “Course.java” resource is shown as having a status of Added to repository
meaning that it is a file that has been added to the repository since your last project
update, and there is no local version as yet. This file can be retrieved performing an
Update from the repository, which is described in the next section.
“Subject.java” shows a different status: Added locally. As the name implies, this file
has been created locally and does not yet have a repository version. You can place a
copy into the repository by performing a Commit action, which is described in a
following section.

7 Updating your local version
From time to time, as other team members make modifications to a project and
commit those changes back to the repository, you will want to update your local
version so that your version of the project contains those modifications. This is
performed by performing an Update. Pressing the Update button in BlueJ’s main
window will open the Update dialog (see Figure 10), which will first check for any
conflicts and inform how to resolve them. If there are no conflicts, a list of files to be
updated with changes from the repository will be displayed, and you can proceed with
the update (by pressing the Update button in the dialog).

 12

Figure 10 Update dialog

It is expected that from time to time more than one person will be modifying the same
source file. It is therefore important that the version control system that enables you to
work as a team does not overwrite any person’s work (unless desired).
The underlying version control system will do its best to merge all modifications of a
file into the final source version. From time to time, if team members are
simultaneously working on the same lines of code, the version control system cannot
determine what the correct version to keep is. In this situation, a merge conflict
occurs. How to handle conflicts is described later in this document (see Resolving
Conflicts). One of the easiest ways to avoid conflicts is to update your local version
reasonably regularly, and to always update your project before attempting to place
your modifications into the repository.
Importantly, different types of files are handled slightly differently when updating
(and also when committing). Image files, data files and class libraries are not handled
as text files that could be merged. If changes are made by two team members
simultaneously, a conflict will be created which must be resolved by one of the team
(see Resolving Conflicts).

Performing an Update on the project whose Status dialog was shown in Figure 9 will
download a copy of the Course.java from the repository and place it in your project. A
new class icon appears in the BlueJ main window’s class diagram. Refreshing or re-
opening the Status dialog will now show the Course.java resource as being Up-to-date
(Figure 11).

 13

Figure 11 Status dialog after Update

8 Committing changes
Once you have made local changes to a project, you can choose to share those
changes with others in your team by performing a Commit operation, which is
initiated by pressing the Commit button in the main window. As mentioned in the
Updating your local version section, it is advisable to perform an Update before
committing your modifications. In any case, if you make changes to a class which is
not up-to-date with the repository version, then you will not be allowed to commit
that class until you have performed an update first.
It is good practice to only commit classes that compile without error, so that the
project version stored in the repository is always workable. Otherwise, your
incomplete work may hold up other developers.

If there are no conflicts, the Commit Comments dialog (Figure 12) will be displayed
after pressing the Commit button in BlueJ’s main window. This dialog is used to
allow you to preview the files that will be committed into the repository, and to also
add some comments describing the changes you have made.

It is good programming practice to ensure that descriptive comments are added when
committing changes. They provide a form of communication between developers as
to the intent of changes, and an audit trail as to when, where and why certain
behaviour was added (or removed).

The upper area of the Commit Comments dialog lists the files that have changed
locally. These will be changed in the repository once you have pressed the Commit
button in the dialog. Afterwards, other team members can use Update to retrieve your
changes into their own working copy of the project.

If you have deleted files from your local version of a project, there is still a need to
confirm that you want to also make that deletion in the repository. This is done also
using the Commit operation. It may seem strange at first that a file that has been
removed locally is included in the Files to be committed area, however it provides an
accurate list of all of the impending changes, some of which may have been otherwise
been overlooked.

 14

If there are no changes in your local project version, the Commit button will be
disabled. Below the Commit comment area there is a check box which allows the
inclusion of diagram layout information in the committed files area. By default this
option is unchecked and is only enabled if there are differences between your current
diagram layout and the layout information stored in the repository. This feature allows
developers to choose whether they wish to maintain separate diagram layouts in their
local projects, or whether layout changes should also be shared.

Figure 12 Commit comments dialog

9 Checking project history
As described above, the Commit Comments Dialog includes an area for the recording
of comments that describe the modifications to the resources that will be committed to
the repository. Writing these comments accurately and carefully is strongly
recommended. This comment, along with data about which files were committed and
who made the modifications, forms a project history. This history can be viewed at
any stage (assuming you can access the repository).
Under the Tools>Team submenu is the menu option: Show Project History. This will
present a dialog (Figure 13) showing all changes to the project since placed in the
repository. As the amount of information for larger projects with larger teams of
developers can create a lot of entries, it is possible to filter and selectively view

 15

history data by the user who has made the modification and/or the specific resource.
For instance it is possible to list all changes made by UserX, or view all modifications
to Course.java, or the combination of the two (all changes made by UserX to
Course.java).

Figure 13 Project History

10 Resolving Conflicts
When updating your local project from the repository, there will be occasions where
conflicts are identified between local and remote modifications. Conflicting changes
in source files (merge conflicts) are handled by firstly alerting the user via a Conflict
Dialog (Figure 14) and then through the mark-up of the two versions of the modified
source code in the source code file (Figure 15).

Figure 14 Update conflict dialog

 16

When selecting the Show Conflicts button in this dialog, the source code with the
conflict is shown in an editor window (Figure 15).

Figure 15 Conflicting code marked in source code.

From lines 11 to 16 of the source code, some additional characters have been inserted
to clearly mark the conflicting segment. The segment is easier to understand once the
meaning of several extra characters is understood. The conflicting segment
commences with line 11:

<<<<<<< Student.java

The next lines contain the local version of the conflicting segment. The local version
ends with the ======= line (line 13).

The next two lines contain the latest version from the repository. This section ends
with line 16 which shows the >>>>>>> 1.2. This represents the end of the repository
version (and its current version number).

To resolve the conflict you will need to choose which version (or combination of
versions) of the changes you would like to keep. One other thing you will need to do
is to delete the three marker lines:

<<<<<<< Student.java

=======
>>>>>>> 1.2

If the marker lines are not removed, you will get additional compilation errors, as they
are not valid Java syntax. You now have a resolved merge of the file that can be used
for further modifications or for committing your modifications to the repository.

 17

There are various other types of conflict that can also occur, although they should be
much less common than merge conflicts. One example is when a file has been deleted
by one team member but modified by another member. Such contrary changes cannot
be meaningfully merged together: Usually a conflict of this nature requires resolution
by deleting the conflicting file and then performing an Update (in any case, the
Commit and Update commands will inform you how to deal with any conflict.

